精英家教网 > 高中数学 > 题目详情

已知函数,其中为正实数,2.7182……
(1)当时,求在点处的切线方程。
(2)是否存在非零实数,使恒成立。

(1)           (2)当时,不等式恒成立。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数 
(1)若关于x的不等式有实数解,求实数m的取值范围;
(2)设,若关于x的方程至少有一个解,求 的最小值.
(3)证明不等式: 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间与极值点;
(2)若,方程有三个不同的根,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
已知函数
(1)求函数的单调区间和极值;
(2)已知的图象与函数的图象关于直线对称,证明:当时,;
(3)如果,证明: 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)设函数时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对于任意的,都有成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求函数的图象在点处的切线方程;
(Ⅱ)讨论函数的单调性;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的单调区间;
(2)设,若对任意,均存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
①求函数的单调区间。
②若函数的图象在点(2,)处的切线的倾斜角为,对任意的,函数在区间上总不是单调函数,求m取值范围
③求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)求的单调区间和最小值;
(2)讨论的大小关系;
(3)求的取值范围,使得对任意>0成立

查看答案和解析>>

同步练习册答案