精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)当时,求函数的图象在点处的切线方程;
(Ⅱ)讨论函数的单调性;

(Ⅰ)(Ⅱ)为增函数,为减函数

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数).
(1)试讨论在区间上的单调性;
(2)当时,曲线上总存在相异两点,使得曲线在点处的切线互相平行,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,如果函数仅有一个零点,求实数的取值范围;
(Ⅱ)当时,试比较与1的大小;
(Ⅲ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)已知函数
(Ⅰ)讨论的单调性;
(Ⅱ)当时,设,若存在,,使
求实数的取值范围。为自然对数的底数,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为正实数,2.7182……
(1)当时,求在点处的切线方程。
(2)是否存在非零实数,使恒成立。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数在定义域内的极值点的个数;
(2)若函数处取得极值,对,恒成立,
求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时都取得极值.
(1)求的值及函数的单调区间;
(2)若对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,
(1) 设(其中的导函数),求的最大值;
(2) 证明: 当时,求证:  ;
(3) 设,当时,不等式恒成立,求的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)一艘轮船在航行中的燃料费和它的速度的立方成正比,已知在速度为每小时10公里时的燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问此轮船以何种速度航行时,能使行驶每公里的费用总和最小?

查看答案和解析>>

同步练习册答案