精英家教网 > 高中数学 > 题目详情

已知函数时都取得极值.
(1)求的值及函数的单调区间;
(2)若对,不等式恒成立,求的取值范围.

(1)f(x)=x3+ax2+bx+c,f¢(x)=3x2+2ax+b
由f¢()=,f¢(1)=3+2a+b=0得a=,b=-2
f¢(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表:

x
(-¥,-

(-,1)
1
(1,+¥)
f¢(x)

0

0

f(x)
­
极大值
¯
极小值
­
所以函数f(x)的递增区间是(-¥,-)与(1,+¥).递减区间是(-,1)
(2)f(x)=x3x2-2x+c,xÎ〔-1,2〕,当x=-时,f(x)=+c
为极大值,而f(2)=2+c,则f(2)=2+c为最大值.
要使f(x)<c2(xÎ〔-1,2〕)恒成立,只需c2>f(2)=2+c 解得c<-1或c>2.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的单调区间;
(2)设,若对任意,均存在,使得,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
已知函数
(1)求函数的单调区间和极值;
(2)已知的图象与函数的图象关于直线对称,证明:当时,;
(3)如果,证明: 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求函数的图象在点处的切线方程;
(Ⅱ)讨论函数的单调性;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的单调区间;
(2)设,若对任意,均存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(1)若函数处与直线相切;
(1) ①求实数的值;      ②求函数上的最大值;
(2)当时,若不等式对所有的都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
①求函数的单调区间。
②若函数的图象在点(2,)处的切线的倾斜角为,对任意的,函数在区间上总不是单调函数,求m取值范围
③求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为实数).
(I)若处有极值,求的值;
(II)若上是增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知x = 1是的一个极值点
(I)求b的值;
(II)求函数f(x)的单调减区间;
(III)设,试问过点(2,5)可作多少条直线与曲线相切?请说明理由.

查看答案和解析>>

同步练习册答案