(本小题满分12分)已知x = 1是
的一个极值点
(I)求b的值;
(II)求函数f(x)的单调减区间;
(III)设
,试问过点(2,5)可作多少条直线与曲线
相切?请说明理由.
科目:高中数学 来源: 题型:解答题
(本小题满分10分)一艘轮船在航行中的燃料费和它的速度的立方成正比,已知在速度为每小时10公里时的燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问此轮船以何种速度航行时,能使行驶每公里的费用总和最小?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)设函数
,
.
(Ⅰ)当
时,
在
上恒成立,求实数
的取值范围;![]()
(Ⅱ)当
时,若函数
在
上恰有两个不同零点,求实数
的取值
范围;![]()
(Ⅲ)是否存在实数
,使函数
和函数
在公共定义域上具有相同的单调性?若存在,求出
的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知函数f(x)=
,其中a , b , c是以d为公差的等差数列,且a>0,d>0.设
[1-
]上,
,在![]()
,将点
A, B, C,
(Ⅰ)求![]()
(II)若⊿ABC有一边平行于x轴,且面积为
,求a ,d的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
.
(Ⅰ)求函数
的单调区间;
(Ⅱ)若函数
的图像在点
处的切线的倾斜角为
,问:
在什么范围取值时,对于任意的
,函数
在区间
上总存在极值?
(Ⅲ)当
时,设函数
,若在区间
上至少存在
一个
,
使得
成立,试求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分16分)已知函数f(x)=x2-(1+2a)x+alnx(a为常数).
(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;
(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com