(本小题满分12分)已知x = 1是的一个极值点
(I)求b的值;
(II)求函数f(x)的单调减区间;
(III)设,试问过点(2,5)可作多少条直线与曲线相切?请说明理由.
科目:高中数学 来源: 题型:解答题
(本小题满分10分)一艘轮船在航行中的燃料费和它的速度的立方成正比,已知在速度为每小时10公里时的燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问此轮船以何种速度航行时,能使行驶每公里的费用总和最小?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)设函数,.
(Ⅰ)当时,在上恒成立,求实数的取值范围;
(Ⅱ)当时,若函数在上恰有两个不同零点,求实数的取值范围;
(Ⅲ)是否存在实数,使函数和函数在公共定义域上具有相同的单调性?若存在,求出的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知函数f(x)=,其中a , b , c是以d为公差的等差数列,且a>0,d>0.设[1-]上,,在,将点A, B, C,
(Ⅰ)求
(II)若⊿ABC有一边平行于x轴,且面积为,求a ,d的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,对于任意的,函数在区间上总存在极值?
(Ⅲ)当时,设函数,若在区间上至少存在一个,
使得成立,试求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分16分)已知函数f(x)=x2-(1+2a)x+alnx(a为常数).
(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;
(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com