| A. | $y={(\sqrt{x})^2}$ | B. | $y=\sqrt{x^2}$ | C. | $y=\left\{\begin{array}{l}x,(x>0)\\-x,(x<0)\end{array}\right.$ | D. | $y={log_b}{b^x}$ |
分析 根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数.
解答 解:对于A,函数y=${(\sqrt{x})}^{2}$=x(x≥0),与y=|x|(x∈R)的定义域不同,对应共线也不同,不是同一函数;
对于B,函数y=$\sqrt{{x}^{2}}$=|x|(x∈R),与y=|x|(x∈R)的定义域相同,对应关系也相同,是同一函数;
对于C,函数y=$\left\{\begin{array}{l}{x,(x>0)}\\{-x,(x<0)}\end{array}\right.$=|x|(x≠0),与y=|x|(x∈R)的定义域不同,不是同一函数;
对于D,函数y=logbbx=x(x∈R),y=|x|(x∈R)的对应关系不同,不是同一函数.
故选:B.
点评 本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -6 | B. | -3 | C. | 3 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{1}{{e}^{2}}$,$\frac{1}{2e}$) | B. | ($\frac{1}{2e}$,$\frac{1}{e}$] | C. | (0,$\frac{1}{{e}^{2}}$) | D. | ($\frac{1}{e}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com