精英家教网 > 高中数学 > 题目详情
17.设数列{an}的前n项和Sn,Sn=2an+λn-4(n∈N+,λ∈R),且数列{an-1}为等比数列.
(Ⅰ)求实数λ的值,并写出数列{an}的通项公式;
(Ⅱ)(i)判断数列{$\frac{1}{{a}_{n}-1}$$-\frac{1}{{a}_{n}}$}(n∈N+)的单调性;(ii)设bn=$\frac{(-1)^{n-1}}{{a}_{n}}$,数列{bn}的前n项和为Tn,证明:T2n<$\frac{2}{9}$.

分析 (Ⅰ)由Sn+1-Sn易得an+1=2an-λ,所以an+1-1=2an-λ-1=$2({a}_{n}-\frac{λ+1}{2})$,又数列{an-1}为等比数列,得λ=1.从而an-1=2n,则an=1+2n
(Ⅱ)(i)作差$\frac{1}{{a}_{n}-1}$$-\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n}({a}_{n}-1)}$=$\frac{1}{({2}^{n}+1){2}^{n}}$即得结论;
(ii)由bn=$\frac{(-1)^{n-1}}{{a}_{n}}$=$\frac{(-1)^{n-1}}{{2}^{n}+1}$,可知T2n=($\frac{1}{3}$-$\frac{1}{5}$)+($\frac{1}{9}$-$\frac{1}{17}$)+…+($\frac{1}{{2}^{2n-1}+1}$-$\frac{1}{{2}^{2n}+1}$),利用$\frac{1}{{2}^{2n-1}+1}$-$\frac{1}{{2}^{2n}+1}$<$\frac{1}{{2}^{2n-1}}$-$\frac{1}{{2}^{2n}}$=$\frac{1}{{2}^{2n}}$=$\frac{1}{{4}^{n}}$,将其放缩即可.

解答 解:(Ⅰ)由Sn=2an+λn-4,得Sn+1=2an+1+λ(n+1)-4,
两式相减得an+1=2an+1-2an+λ,
即an+1=2an-λ,
所以an+1-1=2an-λ-1=$2({a}_{n}-\frac{λ+1}{2})$,
又数列{an-1}为等比数列,
所以$\frac{λ+1}{2}=1$,即λ=1.
所以a1=3,a1-1=2,
所以an-1=2n
故数列{an}的通项公式为:an=1+2n
(Ⅱ)(i)∵$\frac{1}{{a}_{n}-1}$$-\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n}({a}_{n}-1)}$=$\frac{1}{({2}^{n}+1){2}^{n}}$,
又2n,2n+1单调递增,
∴数列{$\frac{1}{{a}_{n}-1}$$-\frac{1}{{a}_{n}}$}(n∈N+)为单调递减数列;
(ii)∵bn=$\frac{(-1)^{n-1}}{{a}_{n}}$=$\frac{(-1)^{n-1}}{{2}^{n}+1}$,
∴T2n=b1+b2+…+b2n
=($\frac{1}{3}$-$\frac{1}{5}$)+($\frac{1}{9}$-$\frac{1}{17}$)+…+($\frac{1}{{2}^{2n-1}+1}$-$\frac{1}{{2}^{2n}+1}$),
由(i)得$\frac{1}{{a}_{2n-1}-1}$-$\frac{1}{{a}_{2n-1}}$>$\frac{1}{{a}_{2n}-1}$-$\frac{1}{{a}_{2n}}$,
即$\frac{1}{{2}^{2n-1}}$-$\frac{1}{{2}^{2n-1}+1}$>$\frac{1}{{2}^{2n}}$-$\frac{1}{{2}^{2n}+1}$,
所以$\frac{1}{{2}^{2n-1}+1}$-$\frac{1}{{2}^{2n}+1}$<$\frac{1}{{2}^{2n-1}}$-$\frac{1}{{2}^{2n}}$=$\frac{1}{{2}^{2n}}$=$\frac{1}{{4}^{n}}$,
所以T2n<($\frac{1}{3}$-$\frac{1}{5}$)+($\frac{1}{{4}^{2}}$+$\frac{1}{{4}^{3}}$+…+$\frac{1}{{4}^{n}}$)
=($\frac{1}{3}$-$\frac{1}{5}$)+$\frac{\frac{1}{16}(1-\frac{1}{{4}^{n-1}})}{1-\frac{1}{4}}$
<$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{12}$=$\frac{13}{60}$<$\frac{2}{9}$.

点评 本题考查了递推式的应用、“裂项求和”以及放缩法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.正偶数列有一个有趣的现象:
①2+4=6    
②8+10+12=14+16;
③18+20+22+24=26+28+30,…
按照这样的规律,则2016在第31 个等式中.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.正方体的内切球和外接球的表面积之比为(  )
A.3:1B.3:4C.4:3D.1:3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设二次函数f(x)=ax2-4x+c的值域为[0,+∞),且f(1)≤4,则$u=\frac{a}{{{c^2}+4}}+\frac{c}{{{a^2}+4}}$的取值范围是$\frac{1}{2}≤u≤\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设等差数列{an}的前n项和为Sn,且满足S19>0,S20<0,则$\frac{{S}_{1}}{{a}_{1}}$,$\frac{{S}_{2}}{{a}_{2}}$,$\frac{{S}_{3}}{{a}_{3}}$,…,$\frac{{S}_{19}}{{a}_{19}}$中最大项为(  )
A.$\frac{{S}_{8}}{{a}_{8}}$B.$\frac{{S}_{9}}{{a}_{9}}$C.$\frac{{S}_{10}}{{a}_{10}}$D.$\frac{{S}_{11}}{{a}_{11}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设集合{(x,y)|(x-1)2+(y-2)2≤10}所表示的区域为A,过原点O的直线l将A分成两部分,当这两部分面积相等时,直线l的方程为2x-y=0;当这两部分面积之差最大时,直线l的方程为x+2y=0,此时直线l落在区域A内的线段长为2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设tanα、tanβ是方程x2-3x+2=0的两个根,则tan(α+β)=(  )
A.-3B.3C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设(x1,y1),(x2,y2),…,(xn,yn)是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归方程(如图),以下结论中正确的是(  )
A.x和y正相关
B.x和y的相关系数在-1到0之间
C.x和y的相关系数为直线l的斜率
D.当n为偶数时,分布在l两侧的样本点的个数一定相同

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F(1,0),且点(-1,$\frac{3}{2}$)在椭圆上,过点P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求$\overrightarrow{OA}•\overrightarrow{OB}$的取值范围;
(Ⅲ)若点B关于x轴的对称点是E,证明:直线AE过定点.

查看答案和解析>>

同步练习册答案