精英家教网 > 高中数学 > 题目详情
如图,由y=0,x=8,y=x2围成了曲边三角形OAB,M为曲线弧OB上一点,
设M点的横坐标为x0,过M作y=x2的切线PQ
(1)求PQ所在直线的方程(用x0表示);
(2)当PQ与OA,AB围成的三角形PQA面积最大时,求x0
(1)f′(x0)=2x0 M(x0,x02
∴PQ的方程2x0x-y-x02=0
(2)PQ的方程中,令y=0,x=
x0
2

P(
x0
2
,0)

|AP|=8-
x0
2

PQ的方程中,令x=8,则y=16x0-x02
∴|AQ|=16x0-x02
.令S△PQA=u
u′=
3
4
x02-16x0+64

x0=
16
3
x0=16(舍)

(0,
16
3
)
是函数的增区(
16
3
,8)
是函数的减区
x0=
16
3
时面积最大
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x
1-2x

(1)求x0,使f′(x0)=0;
(2)求函数f(x)在区间[-1,
1
2
]的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x+
1
x-2

(1)当x>2时,求函数f(x)的最小值;
(2)当x≥4时,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一出租车每小时耗油的费用与其车速的立方成正比,当车速为80km/h时,该车耗油的费用为8元/h,其他费用为12元/h.甲乙两地的公路里程为160km,在不考虑其他因素的前提下,为了使该车开往乙地的总费用最低,该车的车速应当确定为多少公里/小时?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若规定
.
ab
cd
.
=ad-bc
,不等式
.
x+1x
mx-1
.
≥-2
对一切x∈(0,1]恒成立,则实数m的最大值为(  )
A.0B.2C.
5
2
D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=ax3-3x+1对x∈(0,1]总有f(x)≥0成立.则实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数f(x)=
a
x
+lnx
,其中a为实常数.
(1)讨论f(x)的单调性;
(2)不等式f(x)≥1在x∈(0,1]上恒成立,求实数a的取值范围;
(3)若a=0,设g(n)=1+
1
2
+
1
3
+…+
1
n
,h(n)=
1
23
+
2
32
+
3
43
+…+
n-1
n3
(n≥2,n∈N+).是否存在实常数b,既使g(n)-f(n)>b又使h(n)-f(n+1)<b对一切n≥2,n∈N+恒成立?若存在,试找出b的一个值,并证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

现有一张长为80cm,宽为60cm的长方形铁皮ABCD,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,若长方形ABCD的一个角剪下一块铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为x(cm),高为y(cm),体积为V(cm3
(1)求出x与y的关系式;
(2)求该铁皮盒体积V的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的图象如图所示,它与x轴在原点处相切,且x轴与函数图象所围成区域(图中阴影部分)的面积为,则的值为        __.

查看答案和解析>>

同步练习册答案