精英家教网 > 高中数学 > 题目详情
现有一张长为80cm,宽为60cm的长方形铁皮ABCD,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,若长方形ABCD的一个角剪下一块铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为x(cm),高为y(cm),体积为V(cm3
(1)求出x与y的关系式;
(2)求该铁皮盒体积V的最大值.
(1)由题意得x2+4xy=4800,
y=
4800-x2
4x
,0<x<60.(6分)
(2)铁皮盒体积V(x)=x2y=x2
4800-x2
4x
=-
1
4
x3+1200x
,(10分)
V′(x)=-
3
4
x2+1200
,令V′(x)=0,得x=40,(12分)
因为x∈(0,40),V′(x)>0,V(x)是增函数;x∈(40,60),V'(x)<0,V(x)是减函数,
所以V(x)=-
1
4
x3+1200x
,在x=40时取得极大值,也是最大值,其值为32000cm3
答:该铁皮盒体积V的最大值是32000cm3.(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

f(x)=x3-
1
2
x2-2x+5
,若对任意x∈[0,2]都有f(x)<m成立,则m的取值范围为(  )
A.(7,+∞)B.(8,+∞)C.[7,+∞)D.(9,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,由y=0,x=8,y=x2围成了曲边三角形OAB,M为曲线弧OB上一点,
设M点的横坐标为x0,过M作y=x2的切线PQ
(1)求PQ所在直线的方程(用x0表示);
(2)当PQ与OA,AB围成的三角形PQA面积最大时,求x0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=ex+sinx,g(x)=x-2;
(1)求证:函数y=f(x)在[0,+∞)上单调递增;
(2)设P(x1,f(x1)),Q(x2,g(x2))(x1≥0,x2>0),若直线PQx轴,求P,Q两点间的最短距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:函数f(x)=x3-6x+5,x∈R,
(1)求:函数f(x)的单调区间和极值;
(2)若关于x的方程f(x)=a有3个不同实根,求:实数a的取值范围;
(3)当x∈(1,+∞)时,f(x)≥k(x-1)恒成立,求:实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)=x2-2x+3,在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ex,直线l的方程为y=kx+b.
(1)若直线l是曲线y=f(x)的切线,求证:f(x)≥kx+b对任意x∈R成立;
(2)若f(x)≥kx+b对任意x∈R成立,求实数k、b应满足的条件.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x2+bln(x+1).
(Ⅰ)若对定义域内的任意x,都有f(x)≥f(1)成立,求实数b的值;
(Ⅱ)若函数f(x)的定义域上是单调函数,求实数b的取值范围;
(Ⅲ)若b=-1,证明对任意的正整数n,不等式
n
k=1
f(
1
k
)<1+
1
23
+
1
33
+…+
1
n3
成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

二项式()的展开式的第二项的系数为,则的值为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案