分析 (1)由AD⊥平面⊙O可得AD⊥AB,AD⊥AF,故∠BAF即为所求角的平面角;
(2)以O为原点建立空间直角坐标系,求出$\overrightarrow{BD}$,$\overrightarrow{FE}$的坐标,求出cos<$\overrightarrow{BD}$,$\overrightarrow{FE}$>即可.
解答
解:(1)∵AD与两圆所在的平面均垂直,
∴AD⊥AB,AD⊥AF,
∴∠BAF是二面角B-AD-F的平面角,
∵AB=AC,∠BAC=90°,O是BC的中点,
∴∠BAF=$\frac{1}{2}$∠BAC=45°.
即二面角 QUOTE 的大小为45°.
(2)∵OA=OB,∠BAO=45°,∴∠AOB=90°.
以O为原点,以OB,OF,OE所在直线为坐标轴,建立如图所示的空间直角坐标系O-xyz,
则O(0,0,0),A(0,-3$\sqrt{2}$,0),B(3$\sqrt{2}$,0,0),D(0,-3$\sqrt{2}$,8),E(0,0,8),F(0,3$\sqrt{2}$,0),
∵$\overrightarrow{BD}$=(-3$\sqrt{2}$,-3$\sqrt{2}$,8),$\overrightarrow{FE}$=(0,-3$\sqrt{2}$,8),
∴$\overrightarrow{BD}•\overrightarrow{FE}$=0+18+64=82.|$\overrightarrow{BD}$|=10,|$\overrightarrow{FE}$|=$\sqrt{82}$.
∴cos<$\overrightarrow{BD},\overrightarrow{FE}$>=$\frac{\overrightarrow{BD}•\overrightarrow{FE}}{|\overrightarrow{BD}||\overrightarrow{FE}|}$=$\frac{82}{10•\sqrt{82}}$=$\frac{\sqrt{82}}{10}$.
故直线BD与EF所成的角为arccos$\frac{\sqrt{82}}{10}$.
点评 本题考查了空间角的计算,平面向量在立体几何中的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 使用年限x | 1 | 2 | 3 | 4 | 5 |
| 维修费用y | 1.3 | 2.5 | 4.0 | 5.6 | 6.6 |
| A. | 12.86 | B. | 13.38 | C. | 13.59 | D. | 15.02 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}π}}{3}$ | B. | $\frac{4π}{3}$ | C. | $\frac{{8\sqrt{2}π}}{3}$ | D. | $\frac{{\sqrt{3}π}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 价格x | 9 | 9.5 | 10 | 10.5 | 11 |
| 销售量y | 11 | M | 8 | 6 | 5 |
| A. | 6.4 | B. | 8 | C. | 9.6 | D. | 10 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com