精英家教网 > 高中数学 > 题目详情
13.如图所示的三个图中,(1)是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图已经画出.(单位:cm)
(1)作出该多面体的俯视图;
(2)求多面体的体积.

分析 (1)依据画图的规则作出其俯视图即可;
(2)此几何体是一个长方体削去了一个角,由图中的数据易得几何体的体积.

解答 解:(1)如图
(2)它可以看成一个长方体截去一个小三棱锥,
设长方体体积为V1,小三棱锥的体积为V2,则根据图中所给条件得:V1=6×4×4=96(cm3),V2=$\frac{1}{3}•\frac{1}{2}•2•2•2$=$\frac{4}{3}$(cm3),
∴V=V1-V2=$\frac{284}{3}$(cm3).

点评 本题考查由三视图求面积、体积,求解的关键是由视图得出几何体的长、宽、高等性质,熟练掌握各种类型的几何体求体积的公式,可使本题求解更快捷.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.求下列方程的解集
(1)2sin2x-4sinxcosx+4cos2x=1
(2)4cos2x-2sinxcosx-1=0
(3)cos2x-4sin2x=sin2x-2cos2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知在△ABC中,∠B=60°,a=3,b=$\sqrt{19}$.
(1)求c的大小;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=$\frac{3}{2}$,连接CE并延长交AD于F.
(Ⅰ)求证:AD⊥平面CFG;
(Ⅱ)求三棱锥VP-ACG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.所谓正三棱锥,指的是底面为正三角形,顶点在底面上的射影为底面三角形中心的三棱锥,在正三棱锥S-ABC中,M是SC的中点,且AM⊥SB,底面边长AB=2$\sqrt{2}$,则正三棱锥S-ABC的体积为$\frac{4}{3}$,其外接球的表面积为12π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,长方体ABCD-A1B1C1D1中,AB=AD=1.
(1)求异面直线A1B1与BD所成角的大小;
(2)设直线AB1与平面ABCD所成的角为60°,求三棱锥B1-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若长方体的一个顶点上三条棱长分别是1、1、2,且它的八个顶点都在同一球面上,则这个球的体积是(  )
A.B.$\sqrt{6}π$C.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8,BC是⊙O的直径,AB=AC=6,OE∥AD 
(1)求二面角B-AD-F的大小;
(2)求直线BD与EF所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某种产品的广告费用支出与销售额之间有如下的对应数据:
x24568
y3040605070
(1)画出散点图,并说明销售额y与广告费用支出x之间是正相关还是负相关?
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\hat y=bx+a$,$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{({x_i}{y_i})-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}},a=\overline y-\hat b\overline x$,求出回归直线方程.
(3)据此估计广告费用为10时,销售收入y的值.

查看答案和解析>>

同步练习册答案