如图(1),在三角形ABC中,BA=BC=2√乏,ZABC=900,点0,M,N分别为线段的中点,将AABO和AMNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.
(1)求证:AB//平面CMN;
(2)求平面ACN与平面CMN所成角的余
(3)求点M到平面ACN的距离.
详见解析
解析试题分析:(1)证明线与面平行,可通过证明线线平行,线面平行,或是面面平行,线面平行,此题很显然属于后者,根据已知,易证,再根据线面与面面平行的判定定理证得;
(2)这一问可通过空间向量,建立平面直角坐标系,易证两两垂直,所以以为原点建立空间直角坐标系,分别求出面与面的法向量,利用公式,最后又 图像确定钝角还是锐角;
(3)在第二问的基础上,利用点到面的距离公式,.此题比较容易,难点在求解法向量的计算过程容易出错,所以平时要加大法向量的求解要求.
试题解析:(1),平面平面
,平面平面
,∴平面平面,又平面,
∴平面 4分
(2)分别以为轴建立坐标系,
则,,,,,
∴,,设平面的法向量为,
则有,令,得,而平面的法向量为:
, 8分
(3),由(2)知平面的法向量为:,
∴ 12分
考点:1.平行的判定;2.空间坐标系解决二面角与点的面的距离的问题.
科目:高中数学 来源: 题型:解答题
如图,在四棱锥PABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2,E是PB上任意一点.
(1)求证:AC⊥DE;
(2)已知二面角APBD的余弦值为,若E为PB的中点,求EC与平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥中,平面平面,//,,
,且,.
(1)求证:平面;
(2)求和平面所成角的正弦值;
(3)在线段上是否存在一点使得平面平面,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.
(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1夹角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com