精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P­ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2,E是PB上任意一点.
(1)求证:AC⊥DE;
(2)已知二面角A­PB­D的余弦值为,若E为PB的中点,求EC与平面PAB所成角的正弦值.

(1)证明见解析;(2)

解析试题分析:
解题思路:(1)利用线面垂直的性质推得线线垂直:(2)建立空间坐标系,利用二面角A­PB­D的余弦值为,求出PD;进而利用空间向量求线面角的正弦值.
规律总结:对于空间几何体中的垂直、平行关系的判定,要牢牢记住并灵活进行转化,线线关系是关键;涉及夹角、距离问题以及开放性问题,要注意利用空间直角坐标系进行求解.
试题解析:(1)证明:∵PD⊥平面ABCD,AC?平面ABCD,
∴PD⊥AC,
∵四边形ABCD是菱形,∴BD⊥AC,
又BD∩PD=D,∴AC⊥平面PBD,
∵DE?平面PBD,∴AC⊥DE.
(2)在△PDB中,EO∥PD,∴EO⊥平面ABCD,分别以OA,OB,OE所在直线为x轴,y轴,z轴建立空间直角坐标系,设PD=t,则A(1,0,0),B(0,,0),C(-1,0,0),,P(0,-,t),=(-1,,0),=(-1,-,t).

由(1)知,平面PBD的一个法向量为n1=(1,0,0),设平面PAB的法向量为n2=(x,y,z),则根据,
,令y=1,得平面PAB的一个法向量为
∵二面角A­PB­D的余弦值为
则|cos〈n1,n2〉|=,即
,解得t=2或t=-2 (舍去),
∴P(0,-,2).
设EC与平面PAB所成的角为θ,
=(-1,0,-),n2=(,1,1),
则sin θ=|cos〈,n2〉|=
∴EC与平面PAB所成角的正弦值为.
考点:1.线线垂直的判定;2.空间向量在立体几何中的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

已知,则的值为                

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图(1),在三角形ABC中,BA=BC=2√乏,ZABC=900,点0,M,N分别为线段的中点,将AABO和AMNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.
(1)求证:AB//平面CMN;
(2)求平面ACN与平面CMN所成角的余
(3)求点M到平面ACN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E、F、G分别是AB、AD、CD的中点,计算:

(1)·
(2)·
(3)EG的长;
(4)异面直线AG与CE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,直角梯形中,分别为边上的点,且.将四边形沿折起成如图2的位置,使
(1)求证:平面
(2)求平面与平面所成锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,,平面⊥平面是线段上一点,
(1)证明:⊥平面
(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面,底面是直角梯形,,且的中点.

(1)设与平面所成的角为,二面角的大小为,求证:
(2)在线段上是否存在一点(与两点不重合),使得∥平面? 若存在,求的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

异面直线上的单位向量分别为, 且,
则两异面直线所成角的大小为________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(—3,4),且法向量为的直线(点法式)方程为类比以上方法,在空间直角坐标系中,经过点A(1,2,3)且法向量为的平面(点法式)方程为        。(请写出化简后的结果)

查看答案和解析>>

同步练习册答案