如图1,直角梯形
中,
,
分别为边
和
上的点,且
,
.将四边形
沿
折起成如图2的位置,使
.
(1)求证:![]()
平面
;
(2)求平面
与平面
所成锐角的余弦值.![]()
(1)见解析;(2)
。
解析试题分析:(1)取DE中点G,连接FG,AG,
平面
,只需证平面AFG∥平面CBD,又
平面
,
平面
,故只需证
∥平面CBD,
∥平面CBD即可;
(2)要求平面
与平面
所成锐角的余弦值,需找两平面的法向量,取
中点为H,连接DH,可证
, 故以
中点H为原点,
为
轴建立如图所示的空间直角坐标系,易知
是平面
的一个法向量,由
可得平面
的一个法向量为
,然后由空间两向量夹角公式去求平面
与平面
所成锐角的余弦值。
试题解析:(1)证明:取DE中点G,连接FG,AG,CG.因为 CF
DG,所以FG∥CD.因为 CG
AB, ,
所以AG∥BC.所以平面AFG∥平面CBD, 所以 AF∥平面CBD.
(2)解: 取
中点为H,连接DH.
,
,
.
,
.
以
中点H为原点,
为
轴建立如图所示的空间直角坐标系,则
,
,
,
所以
的中点坐标为
因为
,所以
易知
是平面
的一个法向量,
设平面
的一个法向量为![]()
![]()
由
令
则
,
,![]()
,
所以面
与面
所成角的余弦值为
.
考点:(1)空间线面平行、面面平行、线面垂直判定定理的应用;(2)空间两平面夹角的定义、平面法向量的定义的应用;(3)空间向量的基本运算。
科目:高中数学 来源: 题型:解答题
如图,在四棱锥PABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2
,E是PB上任意一点.
(1)求证:AC⊥DE;
(2)已知二面角APBD的余弦值为
,若E为PB的中点,求EC与平面PAB所成角的正弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在棱长为2的正方体
中,
分别是棱
的中点,点
分别在棱
,
上移动,且
.
当
时,证明:直线
平面
;
是否存在
,使平面
与面
所成的二面角为直二面角?若存在,求出
的值;若不存在,说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥
中,平面![]()
平面
,
//
,
,
,且
,
.
(1)求证:
平面
;
(2)求
和平面
所成角的正弦值;
(3)在线段
上是否存在一点
使得平面![]()
平面
,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=
AB.Q是PC上的一点,且PA∥平面QBD.![]()
⑴确定Q的位置;
⑵求二面角Q-BD-C的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.![]()
(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1夹角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com