精英家教网 > 高中数学 > 题目详情

我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(—3,4),且法向量为的直线(点法式)方程为类比以上方法,在空间直角坐标系中,经过点A(1,2,3)且法向量为的平面(点法式)方程为        。(请写出化简后的结果)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

已知为单位正交基,且,则向量与向量的坐标分别是______________;_________________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P­ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2,E是PB上任意一点.
(1)求证:AC⊥DE;
(2)已知二面角A­PB­D的余弦值为,若E为PB的中点,求EC与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在棱长为2的正方体中,分别是棱的中点,点分别在棱,上移动,且.
时,证明:直线平面
是否存在,使平面与面所成的二面角为直二面角?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱上的一点,.
(1)试确定m,使直线AP与平面BDD1B1所成角为60º;
(2)在线段上是否存在一个定点,使得对任意的m,
⊥AP,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知向量a=(2,-1),b=(-1,m),c=(-1,2),若(ab)∥c,则m=________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在空间直角坐标系中,设点是点关于坐标平面的对称点,则线段
长度等于 ▲ 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知为单位正交基,且,则向量的坐标是______________________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知l∥,且l的方向向量为(2, m, 1), 平面的法向量为(1,, 2), 则m=       .

查看答案和解析>>

同步练习册答案