精英家教网 > 高中数学 > 题目详情
己知函数f(x)=2acos2x+bsinxcosx,且f(0)=2,f(
π
3
)=
1
2
+
3
2

(Ⅰ)求f(x)的最大值与最小值;
(Ⅱ)求f(x)的单调增区间.
分析:(Ⅰ)由f(0)=2,f(
π
3
)=
1
2
+
3
2
可得:a=1,b=2,于是可得f(x)=
2
sin(2x+
π
4
)+1,从而可求f(x)的最大值与最小值;
(Ⅱ)由(Ⅰ)得f(x)=
2
sin(2x+
π
4
)+1,令-
π
2
+2kπ≤2x+
π
4
π
2
+2kπ,k∈Z,即可求得其单调增区间.
解答:解:(Ⅰ)由f(0)=2,f(
π
3
)=
1
2
+
3
2
可得:a=1,b=2,
∴f(x)=2cos2x+2sinxcosx
=sin2x+cos2x+1
=
2
sin(2x+
π
4
)+1,
∴当x=
π
8
+kπ(k∈Z)时,f(x)取得最大值,为
2
+1;
当x=
8
+kπ(k∈Z)时,f(x)取得最小值,为-
2
+1;
(Ⅱ)令-
π
2
+2kπ≤2x+
π
4
π
2
+2kπ,k∈Z,
则-
8
+kπ≤x≤
π
8
+kπ,k∈Z,
∴f(x)的单调增区间为[-
8
+kπ,
π
8
+kπ],k∈Z.
点评:本题考查三角函数的化简求值,考查正弦函数的单调性与最值,突出辅助角公式的应用,考查分析与应用能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

己知函数f(x)=log2(-x2+2x+3)的定义域为A,函数g(x)=x+
1
x
x∈(-∞,0)∪(0,
1
2
)
的值域为B,不等式2x2+mx-8<0的解集为C
(1)求A∪(CRB)、A∩B;
(2)若A∩B⊆C,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+bln(2x+1),其中b≠0.
(1)若己知函数f(x)是增函数,求实数b的取值范围;
(2)若己知b=1,求证:对任意的正整数n,不等式n<f(n)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•和平区一模)己知函数f(x+1)是偶函数,当x∈(-∞,1)时,函数f(x)单调递减,设a=f(-
1
2
),b=f(-1),c=f(2),则a,b,c的大小关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网给出下列5个命题:
①0<a≤
1
5
是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为单调减函数的充要条件;
②如图所示,“嫦娥探月卫星”沿地月转移轨道飞向月球,在月球附近一点P进入以月球球心F为一个焦点的椭圆轨道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道II绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道III绕月飞行,若用2Cl和2c2分别表示摘圆轨道I和II的焦距,用2a1和2a2分别表示椭圆轨道I和II的长轴的长,则有c1a2>a1c2
③函数y=f(x)与它的反函数y=f-1(x)的图象若相交,则交点必在直线y=x上;
④己知函数f(x)=loga(1-ax)在(O,1)上满足,f′(x)>0,贝U
1
1-a
>1+a>
2a

⑤函数f(x)=
tan2x+
(1+i)2
i
+1
tan2x+2
(x≠kπ+
π
2
),k∈Z,/为虚数单位)的最小值为2;
其中所有真命题的代号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

己知函数f(x)的定义域关于原点对称,且满足以下三条件:
①当x1,x2是定义域中的数时,有f(x1-x2)=
f(x1)•f(x2)+1f(x2)-f(x1)

②f(a)=-1(a>0,a是定义域中的一个数);
③当0<x<2a时,f(x)<0.
(1)试证明函数f(x)是奇函数.
(2)试证明f(x)在(0,4a)上是增函数.

查看答案和解析>>

同步练习册答案