精英家教网 > 高中数学 > 题目详情
己知函数f(x)的定义域关于原点对称,且满足以下三条件:
①当x1,x2是定义域中的数时,有f(x1-x2)=
f(x1)•f(x2)+1f(x2)-f(x1)

②f(a)=-1(a>0,a是定义域中的一个数);
③当0<x<2a时,f(x)<0.
(1)试证明函数f(x)是奇函数.
(2)试证明f(x)在(0,4a)上是增函数.
分析:(1)利用奇函数的定义,考察f(-x)=-f(x)在定义域内恒成立,则为奇函数;
(2)利用增函数的定义,证明对于(0,4a)内任意的x1<x2,都有f(x1)<f(x2)即可.
解答:解:(1)∵f(x)的定义域关于原点对称,x1,x2是定义域中的数时,
有f(x1-x2)=
f(x1)•f(x2)+1
f(x2)-f(x1)

且x1-x2,-(x1-x2)在定义域中,
∴f[-(x1-x2)]=f(x2-x1)=
f(x1)•f(x2)+1
f(x1)-f(x2)
=-
f(x1)•f(x2)+1
f(x2)-f(x1)
=-f(x1-x2);
∴f[-(x1-x2)]=-f(x1-x2
⇒f(-x)=-f(x)
∴f(x)是奇函数.
(2)设0<x1<x2<2a,则0<x2-x1<2a,
∵在(0,2a)上,f(x)<0,
∴f(x1),f(x2),f(x2-x1)均小于零,
进而知f(x2-x1)=
f(x1)•f(x2)+1
f(x1)-f(x2)
中,f(x1)-f(x2)<0,
于是f(x1)<f(x2),
∴在(0,2a)上,f(x)是增函数.
又f(a)=f(2a-a)=
f(2a )•f(a)+1
f(a )-f(2a)

∵f(a)=-1,∴-1=
f(2a )•f(a)+1
f(a )-f(2a)

∴f(2a)=0,设2a<x<4a,则0<x-2a<2a,
f(x-2a)=
f(x )•f(2a)+1
f(2a )-f(x)
=
1
-f(x)
<0,于是f(x)>0,
即在(2a,4a)上,f(x)>0.
设2a<x1<x2<4a,则0<x2-x1<2a,
从而知f(x1),f(x2)均大于零,f(x2-x1)<0,
∵f(x2-x1)=
f(x1)•f(x2)+1
f(x1)-f(x2)

∴f(x1)-f(x2)<0,即
f(x1)<f(x2),即f(x)在(2a,4a)上也是增函数.
综上所述,f(x)在(0,4a)上是增函数.
点评:本小题主要考查函数单调性的应用、函数奇偶性的判断、函数单调性的判断与证明等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

己知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象点的两点,横坐标为
1
2
的点P是M,N的中点.
(1)求证:y1+y2的定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,n≥2)
an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*)
,Tn为数列{an}前n项和,当Tn<m(Sn+1+1)对一切n∈N*都成立时,试求实数m的取值范围.
(3)在(2)的条件下,设bn=
1
4(Sn+1+1)(Sn+2+1)+1
,Bn为数列{bn}前n项和,证明:Bn
17
52

查看答案和解析>>

科目:高中数学 来源: 题型:

己知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象点的两点,横坐标为
1
2
的点P是M,N的中点.
(1)求证:y1+y2的定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,n≥2),求Sn

(3)设an=
1
4(Sn+1+1)(Sn+2+1)+1
,Tn为数列{an}前n项和,证明:Tn
17
52

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知函数数学公式是f(x)图象点的两点,横坐标为数学公式的点P是M,N的中点.
(1)求证:y1+y2的定值;
(2)若数学公式数学公式,Tn为数列{an}前n项和,当Tn<m(Sn+1+1)对一切n∈N*都成立时,试求实数m的取值范围.
(3)在(2)的条件下,设数学公式,Bn为数列{bn}前n项和,证明:数学公式

查看答案和解析>>

同步练习册答案