【题目】如图,梯形
所在的平面与等腰梯形
所在的平面互相垂直,
,
,
为
的中点.
,
.
![]()
(1)求证:
平面
;
(2)求证:平面
平面
;
(3)求多面体
的体积.
【答案】(1)证明见解析;(2)证明见解析;(3)![]()
【解析】
(1)证明四边形
为平行四边形,推出
,然后证明
平面
;
(2)连接FG,说明
平面ABEF,推出
,
,
,即可证明
平面GCE,推出平面
平面GCE;
(3)设
,几何体
是三棱柱,然后通过多面体
的体积
求解即可.
(1)证明:因为
,且
,
所以四边形
为平行四边形,
所以
.
因为
平面
,
平面![]()
所以
面
.
![]()
(2)证明:连接
.
因为平面
平面
,
平面
平面
,![]()
所以
平面
,所以
.
因为
为
的中点,所以
,
且
,
,且
,
所以四边形
和四边形
均为平行四边形.
所以
,所以
.
因为
,所以四边形
为菱形,
所以
.
所以
平面
.
所以平面
平面
.
(3)设
.
由(1)得
,所以
平面
,
由(2)得
,所以
面
,
所以平面
平面
,
所以几何体
是三棱柱.
由(2)得
平面
.
所以多面体
的体积
![]()
![]()
![]()
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右顶点为
,左焦点为
,离心率
,过点
的直线与椭圆交于另一个点
,且点
在
轴上的射影恰好为点
,若
.
(1)求椭圆
的标准方程;
(2)过圆
上任意一点
作圆
的切线
与椭圆交于
,
两点,以
为直径的圆是否过定点,如过定点,求出该定点;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,左、右顶点分别为
、
,过左焦点的直线
交椭圆
于
、
两点(异于
、
两点),当直线
垂直于
轴时,四边形
的面积为6.
(1)求椭圆的方程;
(2)设直线
、
的交点为
;试问
的横坐标是否为定值?若是,求出定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90,
,M是线段AE上的动点.
(1)试确定点M的位置,使AC∥平面DMF,并说明理由;
(2)在(1)的条件下,求平面MDF将几何体ADE-BCF分成的两部分的体积之比.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年4月20日,重庆市实施高考改革方案,2018年秋季入学的高中一年级的学生将实行“
”模式.即“3”为全国统考科目语文、数学、外语所有学生必考;“1”为物理、历史科目中选择一科俗称“2选1”;“2”为再选学科,考生可在化学、生物、思想政治、地理4个科目中选择两科俗称“4选2”,选择学科完全相同即为相同“组合”.某校高一年级有三名同学甲,乙,丙根据自己喜欢的大学和专业情况均选择了物理,为了了解“4选2”选科情况老师找这三名同学来谈话情况如下:
甲说:我选了化学,但没有选思想政治;
乙说:我与甲有一科相同,但没有选化学和地理;
丙说:我与甲有相同的选科,与乙也有相同选科,但我们三个选的“组合”都不相同.则下列结论正确的是( )
A.甲选了化学和地理B.丙可能选化学和思想政治
C.甲一定选地理D.丙一定选了生物和地理
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阿基米德(公元前
年—公元前
年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率
等于椭圆的长半轴与短半轴的乘积.已知平面直角坐标系
中,椭圆
:![]()
的面积为
,两焦点与短轴的一个顶点构成等边三角形.
(1)求椭圆
的标准方程;
(2)过点
的直线
与
交于不同的两点
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交强险是车主必须为机动车购买的险种,若普通
座以下私家车投保交强险第一年的费用(基准保费)统一为
元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
| 上一年度未发生有责任道路交通事故 | 下浮 |
| 上两年度未发生有责任道路交通事故 | 下浮 |
| 上三年度未发生有责任道路交通事故 | 下浮 |
| 上一个年度发生一次有责任不涉及死亡的道路交通事故 |
|
| 上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故 | 上浮 |
| 上一个年度发生有责任交通死亡事故 | 上浮 |
某机构为了解某一品牌普通
座以下私家车的投保情况,随机抽取了
辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 |
|
|
|
|
|
数量 |
|
|
|
|
|
以这
辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,
,记
为某同学家的一辆该品牌车在第四年续保时的费用,求
的分布列与数学期望;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损
元,一辆非事故车盈利
元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进
辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年12月,全国各中小学全体学生都参与了《禁毒知识》的答题竞赛,现从某校高一年级参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如下频率分布直方图(其中分组区间为
,
,…
).
![]()
(1)求成绩在
的频率,并补全此频率分布直方图;
(2)求这次考试成绩的中位数的估计值;
(3)若从抽出的成绩在
和
的学生中任选两人,求他们的成绩在同一分组区间的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com