精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(Ⅰ)当m=0时,求曲线y=f(x)在x=1处的切线方程;

(Ⅱ)若函数f(x)的图象在x轴的上方,求m的取值范围.

【答案】(Ⅰ)y=-x+1;(Ⅱ)

【解析】

(Ⅰ)求得f(x)解析式和导数,可得切线的斜率,由点斜式方程可得切线方程;

(Ⅱ)由题意,求得f(x)的导数,按m≤0,0<m≤1分类讨论,得f(x)的单调性,计算得最小值,解不等式即可得所求的范围.

(Ⅰ)当m=0时,f(x)=﹣xlnx,f(x)=﹣lnx﹣1,所以f(1)=0,f(1)=﹣1,

所以曲线y=f(x)在x=1处的切线方程是y=﹣x+1;

(Ⅱ)“函数f(x)的图象在x轴的上方”,等价于“x>0时,f(x)>0恒成立”.

,得f(x)=(2mx-1)lnx+2mx-1=(2mx-1)(lnx+1),

①当m≤0时,因为,不合题意;

②当0<m≤1时,令f(x)=0得,显然

令f(x)>0得;令f(x)<0得

所以函数f(x)的单调递增区间是,单调递减区间

时,mx2﹣x<0,lnx<0,所以

只需,所以,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).以原点为极点,以轴为非负半轴为极轴建立极坐标系,两坐标系相同的长度单位.圆的方程为被圆截得的弦长为.

(Ⅰ)求实数的值;

(Ⅱ)设圆与直线交于点,若点的坐标为,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆轴相切,且与圆外切;

(1)求动圆圆心的轨迹的方程;

(2)若直线过定点,且与轨迹交于两点,与圆交于两点,若点到直线的距离为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(I)若为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;

(Ⅱ)设直线的参数方程为为参数,,且直线与曲线相交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校学生会开展了一次关于垃圾分类问卷调查的实践活动,组织部分学生干部在几个大型小区随机抽取了共50名居民进行问卷调查.调查结束后,学生会对问卷结果进行了统计,并将其中一个问题是否知道垃圾分类方法(知道或不知道)的调查结果统计如下表:

年龄(岁)

频数

14

12

8

6

知道的人数

3

4

8

7

3

2

1)求上表中的的值,并补全右图所示的的频率直方图;

2)在被调查的居民中,若从年龄在的居民中各随机选取1人参加垃圾分类知识讲座,求选中的两人中仅有一人不知道垃圾分类方法的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形所在的平面与等腰梯形所在的平面互相垂直,的中点..

1)求证:平面

2)求证:平面平面

3)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一项针对某一线城市3050岁都市中年人的消费水平进行调查,现抽查500名(200名女性,300名男性)此城市中年人,最近一年内购买六类高价商品(电子产品、服装、手表、运动与户外用品、珠宝首饰、箱包)的金额(万元)的频数分布表如下:

女性

金额

频数

20

40

80

50

10

男性

金额

频数

45

75

90

60

30

1)将频率视为概率,估计该城市中年人购买六类高价商品的金额不低于5000元的概率.

2)把购买六类高价商品的金额不低于5000元的中年人称为高收入人群,根据已知条件完成列联表,并据此判断能否有95%的把握认为高收入人群与性别有关?

高收入人群

非高收入人群

合计

女性

60

男性

180

合计

500

参考公式:,其中

参考附表:

0.10

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,则( )

A. 存在

B. 存在

C. 存在

D. 存在

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是正方体的棱,,的中点,则下列命题中的真命题是__________(写出所有真命题的序号).

①以正方体的顶点为顶点的三棱锥的四个面中最多可以四个面都是直角三角形;

②点在直线上运动时,总有;

③点在直线上运动时,三棱锥的体积是定值;

④若是正方体的面,(含边界)内一动点,且点到点的距离相等,则点的轨迹是一条线段.

查看答案和解析>>

同步练习册答案