【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(I)若
为曲线
上的动点,点
在线段
上,且满足
,求点
的轨迹
的直角坐标方程;
(Ⅱ)设直线
的参数方程为
(
为参数,
,且直线
与曲线
相交于
,
两点,求
面积的最大值.
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点到其准线的距离为
.
(1)求抛物线
的方程;
(2)设直线
与抛物线
相交于
两点,问抛物线
上是否存在点
,使得
是正三角形?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆柱
,底面半径为1,高为2,
是圆柱的一个轴截面,动点
从点
出发沿着圆柱的侧面到达点
,其路径最短时在侧面留下的曲线记为
:将轴截面
绕着轴
,逆时针旋转
角到
位置,边
与曲线
相交于点
.
![]()
(1)当
时,求证:直线
平面
;
(2)当
时,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,左、右顶点分别为
、
,过左焦点的直线
交椭圆
于
、
两点(异于
、
两点),当直线
垂直于
轴时,四边形
的面积为6.
(1)求椭圆的方程;
(2)设直线
、
的交点为
;试问
的横坐标是否为定值?若是,求出定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,点
在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)点
在圆
上,且
在第一象限,过
作
的切线交椭圆于
两点,问:
的周长是否为定值?若是,求出定值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90,
,M是线段AE上的动点.
(1)试确定点M的位置,使AC∥平面DMF,并说明理由;
(2)在(1)的条件下,求平面MDF将几何体ADE-BCF分成的两部分的体积之比.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阿基米德(公元前
年—公元前
年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率
等于椭圆的长半轴与短半轴的乘积.已知平面直角坐标系
中,椭圆
:![]()
的面积为
,两焦点与短轴的一个顶点构成等边三角形.
(1)求椭圆
的标准方程;
(2)过点
的直线
与
交于不同的两点
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图,汉诺塔问题是指有3根杆子A,B,C.B杆上有若干碟子,把所有碟子从B杆移到A杆上,每次只能移动一个碟子,大的碟子不能叠在小的碟子上面.把B杆上的4个碟子全部移到A杆上,最少需要移动( )次. ( )
![]()
![]()
![]()
A.12 B.15 C.17 D.19
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com