【题目】已知抛物线
的焦点到其准线的距离为
.
(1)求抛物线
的方程;
(2)设直线
与抛物线
相交于
两点,问抛物线
上是否存在点
,使得
是正三角形?若存在,求出点
的坐标;若不存在,请说明理由.
【答案】(1)
(2)存在,点
的坐标为![]()
【解析】
(1)因为抛物线
,物线
的焦点为
,准线为
,由
,即可求得答案;
(2)设
,
,则由
消掉
得:
,解得
,假设抛物线
上存在满足条件的点
,结合已知,即可得出答案.
(1)
抛物线![]()
抛物线
的焦点为
,准线为
,
由
得
,
抛物线
的方程为
.
(2)设
,
,
则由
消掉
得:![]()
即
,
根据韦达定理可得:
,
.
又
由两点间距离公式可得:![]()
,
![]()
.
假设抛物线
上存在满足条件的点
,
设
的中点
,
则
,![]()
即
.
是正三角形,
![]()
,且
.
由
和直线
和![]()
可得
的方程为:
即
.
又
由点
在
上,
![]()
.
①
由
及点
到直线
的距离,得![]()
②
由联立①②解得
或
检验点
不在抛物线
上,
存在满足条件的点
的坐标为
.
另法参考:亦可由![]()
得
或![]()
经验证
,点
不符合条件.
存在满足条件的点
的坐标为
.
科目:高中数学 来源: 题型:
【题目】在某次测验中,某班40名考生的成绩满分100分统计如图所示.
![]()
(Ⅰ)估计这40名学生的测验成绩的中位数
精确到0.1;
(Ⅱ)记80分以上为优秀,80分及以下为合格,结合频率分布直方图完成下表,并判断是否有95%的把握认为数学测验成绩与性别有关?
合格 | 优秀 | 合计 | |
男生 | 16 | ||
女生 | 4 | ||
合计 | 40 |
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(其中
为参数).以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,并取相同的单位长度,曲线
的极坐标方程为
.
(1)求直线
的普通方程和曲线
的直角坐标方程;
(2)过点
作直线
的垂线交曲线
于
两点,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点
,满足|PA|=2|PB|的点
的轨迹是圆M:x2+y2
x+Ey+F=0.直线AB与圆M相交于C,D两点,
,且点C的纵坐标为
.
(1)求a,b的值;
(2)已知直线l:x+y+2=0与圆M相交于G,H两点,求|GH|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥
的底面
是菱形,
,
底面
,
是
上的任意一点.
![]()
(1)求证:平面
平面
;
(2)设
,是否存在点
使平面
与平面
所成的锐二面角的大小为
?如果存在,求出点
的位置,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数).以原点
为极点,以
轴为非负半轴为极轴建立极坐标系,两坐标系相同的长度单位.圆
的方程为
被圆
截得的弦长为
.
(Ⅰ)求实数
的值;
(Ⅱ)设圆
与直线
交于点
,若点
的坐标为
,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体ABCD﹣A1B1C1D1中,O为线段AC的中点,点E在线段A1C1上,则直线OE与平面A1BC1所成角的正弦值的取值范围是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(I)若
为曲线
上的动点,点
在线段
上,且满足
,求点
的轨迹
的直角坐标方程;
(Ⅱ)设直线
的参数方程为
(
为参数,
,且直线
与曲线
相交于
,
两点,求
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com