精英家教网 > 高中数学 > 题目详情
4.已知复数2i-3是方程2x2+px+q=0的一个根,则实数p,q的值分别是(  )
A.12,0B.24,26C.12,26D.6,8

分析 由实系数一元二次方程虚根成对定理可得方程另一根为-2i-3,再由韦达定理得答案.

解答 解:∵2i-3是关于x的方程2x2+px+q=0的一个根,
由实系数一元二次方程虚根成对定理,可得方程另一根为-2i-3,
则$\frac{q}{2}$=(-3+2i)(-3-2i)=13,即q=26,
-$\frac{p}{2}$=-3+2i-3-2i=-6,即p=12
故选:C

点评 本题主要考查实系数一元二次方程虚根成对定理、韦达定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的焦距为4,左、右焦点分别为F1、F2,且C1与抛物线C2:y2=x的交点所在的直线经过F2
(Ⅰ)求椭圆C1的方程;
(Ⅱ)分别过F1、F2作平行直线m、n,若直线m与C1交于A,B两点,与抛物线C2无公共点,直线n与C1交于C,D两点,其中点A,D在x轴上方,求四边形AF1F2D的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某颜料公司生产A、B两种产品,其中生产每吨A产品,需要甲染料1吨,乙染料4吨,丙染料2吨;生产每吨B产品,需要甲染料1吨,乙染料0吨,丙染料5吨,且该公司一天之内甲、乙、丙三种染料的用量分别不超过50吨、160吨、200吨.如果A产品的利润为300元/吨,B产品的利润为200元/吨,则该颜料公司一天内可获得的最大利润为(  )
A.14000元B.16000元C.18000元D.20000元

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.我们知道:在长方形ABCD中,如果设AB=a,BC=b,那么长方形ABCD的外接圆的半径R满足:4R2=a2+b2,类比上述结论回答:在长方体ABCD-A1B1C1D1中,如果设AB=a,AD=b,AA1=c,那么长方体ABCD-A1B1C1D1的外接球的半径R满足的关系式是4R2=a2+b2+c2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.数列{an}的前项和为Sn,且${a_1}=\frac{2}{3},{a_{n+1}}-{S_n}=\frac{2}{3}$,用[x]表示不超过x的最大整数,如[-0.1]=-1,[1.6]=1,设bn=[an],则数列{bn}的前2n项和b1+b2+b3+b4+…+b2n-1+b2n=$\frac{{2}^{2n+1}}{3}$-n-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设F是椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点,P是C上的点,圆x2+y2=$\frac{{a}^{2}}{9}$与线段PF交于A、B两点,若A、B三等分线段PF,则C的离心率为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{5}}{3}$C.$\frac{\sqrt{10}}{4}$D.$\frac{\sqrt{17}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=e-x+ax(a∈R)
(1)讨论f(x)的最值;
(2)若a=0,求证:f(x)>-$\frac{1}{2}$x2+$\frac{5}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=log22x-log2x+1(x≥2)的反函数为f-1(x).则f-1(3)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a>0且a≠1,则(a-1)b<0是ab<1的(  )
A.充要条件B.必要而不充分条件
C.充分而不必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案