精英家教网 > 高中数学 > 题目详情
设F1,F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,若椭圆上存在点A,使∠F1AF2=90°且|AF1|=3|AF2|,则椭圆的离心率为
 
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:首先根据椭圆的定义建立|AF1|+|AF2|=2a,|AF1|=3|AF2|进一步求得:|AF2|=
a
2
,|AF1|=
3a
2
,再利用定义关系式和勾股定理解得:8c2=5a2,最后进一步解得离心率.
解答: 解:设F1,F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,若椭圆上存在点A根据椭圆定义:|AF1|+|AF2|=2a所以:|AF2|=
a
2
,|AF1|=
3a
2

由于:∠F1AF2=90°
所以:|AF1|2+|AF2|2=4c2
则:|AF1|2+|AF2|2+2|AF1||AF2|=4a2
进一步解得:8c2=5a2
所以:e=
10
4

故答案为:e=
10
4
点评:本题考查的知识要点:椭圆的定义关系式,勾股定理,椭圆的离心率及相关的运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若A∈α,B∈α,A∈l,B∈l,P∈l,则(  )
A、P?αB、P∉α
C、l?αD、P∈α

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线a,b同时和第三条直线垂直,则直线a,b的位置关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1的左右准线l1,l2将线段F1F2三等分,F1,F2分别为双曲线的左右焦点,则双曲线的渐近线方程为(  )
A、x±
2
y=0
B、y±
2
x=0
C、x±
3
y=0
D、y±
3
x=0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,割线PBC经过圆心O,OB=PB=1,又PED交圆O于E,D,且DE=
4
7
7
,则△OPD的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

今年3月1日,重庆某中学50位学生参加了“北约联盟”的自主招生考试.这50位同学的数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[60,70),[70,80),[80,90),[90,100),[100,110),[110,120].
(Ⅰ)求图中a的值;
(Ⅱ)从成绩不低于100分的学生中随机选取2人,该2人中成绩在110分以上(含110分)的人数记为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)
与抛物线C2:y2=2px(p>0)有相同焦点,若双曲线C1与抛物线C2的一个公共点为P,且点P到抛物线的准线的距离为p,则双曲线的离心率为(  )
A、
2
+1
B、
2
C、2
D、2+
2

查看答案和解析>>

科目:高中数学 来源: 题型:

与圆类似,连接圆锥曲线上两点的线段叫做圆锥曲线的弦.过有心曲线(椭圆、双曲线)中心(即对称中心)的弦叫做有心曲线的直径.
对圆x2+y2=r2,由直径所对的圆周角是直角出发,可得:若AB是圆O的直径,M是圆O上异于A、B的一点,且AM,BM均与坐标轴不平行,则kAM•kBM=-1.
(1)试根据点M和直径AB的特殊位置,写出椭圆
x2
a2
+
y2
b2
=1
的类似结论;
(2)对于任意位置满足条件的点M和直径AB,判断并证明(1)中的结论是否恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足a1=1,a2=4,a3=9,an=an-1+an-2-an-3,n=4,5,…,则a2014=
 

查看答案和解析>>

同步练习册答案