精英家教网 > 高中数学 > 题目详情
7.已知x≥1,y≥0,集合A={(x,y)|x+y≤4},B={(x,y)|y=kx-1},如果A∩B≠∅,则k的取值范围是$[\frac{1}{4},4]$.

分析 由题意作出可行域,把A∩B≠Φ转化为直线y=kx-1与可行域有公共点,然后利用两点求直线的斜率得答案.

解答 解:由$\left\{\begin{array}{l}{x≥1}\\{y≥0}\\{x+y≤4}\end{array}\right.$作出可行域如图,

要使A∩B≠∅,则直线y=kx-1与可行域有公共点,
联立$\left\{\begin{array}{l}{x=1}\\{x+y=4}\end{array}\right.$,得B(1,3),
又A(4,0),
直线y=kx-1过定点P(0,-1),
${k}_{PA}=\frac{-1-0}{0-4}=\frac{1}{4}$,${k}_{PB}=\frac{-1-3}{0-1}=4$.
∴k的取值范围是$[\frac{1}{4},4]$.
故答案为:$[\frac{1}{4},4]$.

点评 本题考查了集合运算,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设P为双曲线C:x2-y2=1上一点,F1、F2分别为双曲线C的左右焦点,若cos∠F1PF2=$\frac{1}{3}$,则△PF1F2的外接圆的半径为(  )
A.$\frac{3}{2}$B.3C.$\frac{9}{4}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知实数x∈{1,2,3,4,5,6,7,8},执行如图所示的程序框图,则输出的x不小于121的概率为(  )
A.$\frac{3}{4}$B.$\frac{5}{8}$C.$\frac{7}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.袋中有4个白球,5个黑球,现从中任取两个,至少一个是黑球的概率为$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图的程序框图,当输入25时,则该程序运行后输出的结果是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图的程序框图,若输入a=1,b=1,c=-1,则输出的结果满足(  )
A.0<e<1,f>1B.-1<e<0,1<f<2C.-2<e<-1,0<f<1D.无解

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx.
(Ⅰ)求过点(0,0),曲线y=f(x)的切线方程;
(Ⅱ)设函数g(x)=f(x)-ex,求证:函数g(x)有且只有一个极值点;
(Ⅲ)若f(x)≤a(x-1)恒成立,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=cos(2x+$\frac{2π}{3}$)+2cos2x,x∈R.
(Ⅰ)求函数f(x)的最小正周期和单调减区间;
(Ⅱ)将函数f(x)的图象向右平移$\frac{π}{3}$个单位长度后得到函数g(x)的图象,求函数g(x)在区间$[{0,\frac{π}{2}}]$上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\frac{1}{3}$x3+x2+mx在区间(-2,2)上单调递减,则实数m的取值范围是(-∞,-8].

查看答案和解析>>

同步练习册答案