分析 由题意作出可行域,把A∩B≠Φ转化为直线y=kx-1与可行域有公共点,然后利用两点求直线的斜率得答案.
解答 解:由$\left\{\begin{array}{l}{x≥1}\\{y≥0}\\{x+y≤4}\end{array}\right.$作出可行域如图,![]()
要使A∩B≠∅,则直线y=kx-1与可行域有公共点,
联立$\left\{\begin{array}{l}{x=1}\\{x+y=4}\end{array}\right.$,得B(1,3),
又A(4,0),
直线y=kx-1过定点P(0,-1),
${k}_{PA}=\frac{-1-0}{0-4}=\frac{1}{4}$,${k}_{PB}=\frac{-1-3}{0-1}=4$.
∴k的取值范围是$[\frac{1}{4},4]$.
故答案为:$[\frac{1}{4},4]$.
点评 本题考查了集合运算,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 3 | C. | $\frac{9}{4}$ | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{5}{8}$ | C. | $\frac{7}{8}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0<e<1,f>1 | B. | -1<e<0,1<f<2 | C. | -2<e<-1,0<f<1 | D. | 无解 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com