【题目】如图1,在边长为2的正方形ABCD中,P为CD中点,分别将△PAD, △PBC沿 PA,PB所在直线折叠,使点C与点D重合于点O,如图2.在三棱锥P-OAB中,E为 PB中点.
(Ⅰ)求证:PO⊥AB;
(II)求直线BP与平面POA所成角的正弦值;
(Ⅲ)求二面角P-AO-E的大小.
![]()
【答案】(Ⅰ)见解析;(Ⅱ)
. (Ⅲ)
.
【解析】试题分析:第一问利用几何体的特征可以得出相应的线线垂直,之后利用线面垂直的判定定理和性质得出所要的结果;第二问建立空间直角坐标系,利用空间向量求得线面角的正弦值;第三问利用面的法向量所成角的余弦值求得角的大小,最后确定出二面角的大小.
(Ⅰ)在正方形
中,
为
中点,
,
,
所以在三棱锥
中,
,
.
因为
,所以
平面
.
因为
平面
,所以
.
![]()
(Ⅱ)取AB中点F,连接OF,取AO中点M,连接BM.
![]()
过点O作AB的平行线OG.
因为PO⊥平面OAB,所以PO⊥OF,PO⊥OG.
因为OA=OB,F为AB的中点,
所以OF⊥AB. 所以OF⊥OG.
如图所示,建立空间直角坐标系O-xyz.
A
,B
,P
,M(
,
,0).
因为BO=BA,M为OA的中点,所以BM⊥OA.
因为PO⊥平面OAB,PO平面POA,所以平面POA⊥平面OAB.
因为平面POA∩平面OAB=OA,BM平面OAB,
所以BM⊥平面POA.
因为
=(
,-
,0).所以平面POA的法向量m=
.
=(1,-
,1).
设直线BP与平面POA所成角为α,
则
.
所以直线BP与平面POA所成角的正弦值为
.
(Ⅲ)由(Ⅱ)知
,
,
.
设平面
的法向量为
,则有
即![]()
令
,则
,
. 即
.
所以
.
由题知二面角P-AO-E为锐角,所以它的大小为
.
科目:高中数学 来源: 题型:
【题目】已知集合
是集合
的一个含有
个元素的子集.
(Ⅰ)当
时,
设![]()
(i)写出方程
的解
;
(ii)若方程
至少有三组不同的解,写出
的所有可能取值.
(Ⅱ)证明:对任意一个
,存在正整数
使得方程
至少有三组不同的解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆
:
的离心率为
,点
在椭圆
上.
(1)求椭圆
的方程;
(2)已知
与
为平面内的两个定点,过
点的直线
与椭圆
交于
,
两点,求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数f(x)=Asin(ωx+
)(A>0,ω>0,|
|<
)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+ | 0 |
| π |
| 2π |
x |
|
| |||
Asin(ωx+ | 0 | 5 | -5 | 0 |
(1)请将上表数据补充完整,并求出函数f(x)的解析式;
(2)将y=f(x)的图象向左平移
个单位,得到函数y=g(x)的图象.若关于x的方程g(x)-m=0在区间[0,
]上有两个不同的解,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.
![]()
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差;
(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正三棱柱
中,所有棱长都等于
.
![]()
(1)当点
是
的中点时,
①求异面直线
和
所成角的余弦值;
②求二面角
的正弦值;
(2)当点
在线段
上(包括两个端点)运动时,求直线
与平面
所成角的正弦值的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com