【题目】已知函数
,
.
(1)若函数
在
处取得极值,求实数
的值;
(2)若函数
在区间
上单调递增,求实数
的取值范围;
(3)讨论函数
的零点个数.
【答案】(1)2;(2)
;(3)详见解析.
【解析】
(1)求出函数的导数,由题意可得
,即可得
,注意检验;
(2)由条件可得,
在区间
上恒成立,运用参数分离,求得右边函数的范围,即可得到
的范围;
(3)令
,则
,求出导数,结合图象对
讨论,即可判断零点个数.
(1)因为函数
在
处取得极值,
,
所以
,即
,解得
,
经检验,当
时,函数
在
处取得极小值.所以实数
的值为
.
(2)由(1)知,
,
.
因为函数
在区间
上单调递增,所以
在区间
上恒成立.
即
在区间
上恒成立.
易得当
时,
,所以
.
故实数
的取值范围为
.
(3)因为
,所以
,
.
令
得
,
令
,
,
则
.
当
时,
,
在
上单调递增;
当
时,
,
在
上单调递减.
画出函数
的草图,
![]()
易得
,
并且图象无限靠近于原点,且当
时,
,
故当
时,函数
无零点;当
或
时,函数
有一个零点;当
时,函数
有两个零点.
科目:高中数学 来源: 题型:
【题目】椭圆
:
的左右焦点分别为
,
,左右顶点分别为
,
,
为椭圆
上的动点(不与
,
重合),且直线
与
的斜率的乘积为
.
![]()
(1)求椭圆
的方程;
(2)过
作两条互相垂直的直线
与
(均不与
轴重合)分别与椭圆
交于
,
,
,
四点,线段
、
的中点分别为
、
,求证:直线
过定点,并求出该定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年电子商务蓬勃发展,
年某网购平台“双
”一天的销售业绩高达
亿元人民币,平台对每次成功交易都有针对商品和快递是否满意的评价系统.从该评价系统中选出
次成功交易,并对其评价进行统计,网购者对商品的满意率为
,对快递的满意率为
,其中对商品和快递都满意的交易为
次.
(1)根据已知条件完成下面的
列联表,并回答能否有
的把握认为“网购者对商品满意与对快递满意之间有关系”?
对快递满意 | 对快递不满意 | 合计 | |
对商品满意 |
| ||
对商品不满意 | |||
合计 |
|
(2)若将频率视为概率,某人在该网购平台上进行的
次购物中,设对商品和快递都满意的次数为随机变量
,求
的分布列和数学期望
.
附:
(其中
为样本容量)
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在边长为2的正方形ABCD中,P为CD中点,分别将△PAD, △PBC沿 PA,PB所在直线折叠,使点C与点D重合于点O,如图2.在三棱锥P-OAB中,E为 PB中点.
(Ⅰ)求证:PO⊥AB;
(II)求直线BP与平面POA所成角的正弦值;
(Ⅲ)求二面角P-AO-E的大小.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C1:x2+y2=b2与椭圆C2:
=1(a>b>0),若在椭圆C2上存在一点P,使得由点P所作的圆C1的两条切线互相垂直,则椭圆C2的离心率的取值范围是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖一次.抽奖方法是:从装有标号为
的
个红球和标号为
的
个白球的箱中,随机摸出
个球,若摸出的两球号码相同,可获一等奖;若两球颜色不同且号码相邻,可获二等奖,其余情况获三等奖.已知某顾客参与抽奖一次.
(Ⅰ)求该顾客获一等奖的概率;
(Ⅱ)求该顾客获三获奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,函数
(
是自然对数的底数).
(Ⅰ)若
,证明:曲线
没有经过点
的切线;
(Ⅱ)若函数
在其定义域上不单调,求
的取值范围;
(Ⅲ)是否存在正整数
,当
时,函数
的图象在
轴的上方,若存在,求
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的各项均为正数,a1=1,前n项和为Sn.数列{bn}为等比数列,b1=1,且b2S2=6,b2+S3=8.
(1)求数列{an}与{bn}的通项公式;
(2)求
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com