精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,椭圆 的离心率为,点在椭圆上.

(1)求椭圆的方程;

(2)已知为平面内的两个定点,过点的直线与椭圆交于 两点,求四边形面积的最大值.

【答案】(1)(2)6

【解析】试题分析:(1)根据离心率及点在椭圆上可求出a,b,写出椭圆的方程;(2)联立直线和椭圆方程,消元得一元二次方程,求出弦长,再利用点到直线的距离求出高,即可写出面积,利用换元法,求其最大值.

试题解析:

解:(1)∵,∴

椭圆的方程为

代入得,∴

∴椭圆的方程为

(2)设的方程为,联立

消去,得

设点

到直线的距离为

到直线的距离为

从而四边形的面积(或

,设函数 ,所以上单调递增,

,故

所以当,即时,四边形面积的最大值为6.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

1)求的解析式;

(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各题中,的什么条件?

1为自然数,为整数;

2

3

4:四边形的一组对边相等,:四边形为平行四边形;

5:四边形的对角线互相垂直,:四边形为菱形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为()

(结果精确到0.1.参考数据:lg20.3010lg30.4771.)

A.2.6B.2.2C.2.4D.2.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年电子商务蓬勃发展, 年某网购平台“双”一天的销售业绩高达亿元人民币,平台对每次成功交易都有针对商品和快递是否满意的评价系统.从该评价系统中选出次成功交易,并对其评价进行统计,网购者对商品的满意率为,对快递的满意率为,其中对商品和快递都满意的交易为次.

(1)根据已知条件完成下面的列联表,并回答能否有的把握认为“网购者对商品满意与对快递满意之间有关系”?

对快递满意

对快递不满意

合计

对商品满意

对商品不满意

合计

(2)若将频率视为概率,某人在该网购平台上进行的次购物中,设对商品和快递都满意的次数为随机变量,求的分布列和数学期望.

附: (其中为样本容量)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的一段图象如图所示.

(1)求函数的解析式;

(2)将函数的图象向右平移个单位,得到的图象,求直线

函数的图象在内所有交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在边长为2的正方形ABCD中,P为CD中点,分别将△PAD, △PBC沿 PA,PB所在直线折叠,使点C与点D重合于点O,如图2.在三棱锥P-OAB中,E为 PB中点.

(Ⅰ)求证:PO⊥AB;

(II)求直线BP与平面POA所成角的正弦值;

(Ⅲ)求二面角P-AO-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖一次.抽奖方法是:从装有标号为个红球和标号为个白球的箱中,随机摸出个球,若摸出的两球号码相同,可获一等奖;若两球颜色不同且号码相邻,可获二等奖,其余情况获三等奖.已知某顾客参与抽奖一次.

Ⅰ)求该顾客获一等奖的概率;

Ⅱ)求该顾客获三获奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·全国Ⅱ卷)如图,四棱锥PABCD中,侧面PAD为等边三角形且垂直于底面ABCDABBCADBADABC90°EPD的中点.

(1)证明:直线CE∥平面PAB

(2)M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角MABD的余弦值.

查看答案和解析>>

同步练习册答案