精英家教网 > 高中数学 > 题目详情
用反证法证明命题:“三角形的三内角中至少有一个不大于60度”时,反设是“假设三角形的三内角
 
.”
考点:反证法与放缩法
专题:计算题,反证法
分析:根据命题“三角形的内角中至少有一个内角不大于60°”的否定是:三角形的三个内角都大于60°,由此得到答案.
解答: 证明:用反证法证明命题:“三角形的内角中至少有一个内角不大于60°”时,
应假设命题的否定成立,而命题“三角形的内角中至少有一个内角不大于60°”的否定是:
三角形的三个内角都大于60°,
故答案为:都大于60°.
点评:本题主要考查求一个命题的否定,用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x2-4,x>0
2
,x=0
-3x2+3,x<0
,那么f{f[f(-1)]}=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

点A、B、C、D在同一个球的球面上,且AB=CD=
3
,BC=2AC=2BD=2,则该球的表面积为(  )
A、16πB、12π
C、8πD、4π

查看答案和解析>>

科目:高中数学 来源: 题型:

武汉外国语学校从参加高二年级期末考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图.观察图形的信息,回答如下问题:
(1)求分数在[120,130)内的频率,并补全这个频率分布直方图;
(2)用分层抽样的方法在分数段[110,130)的学生中抽取一个容量为6的样本,将样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的通项公式an=n2+2n,则数列{
1
an
}的前10项和为(  )
A、
175
132
B、
175
264
C、
132
175
D、
264
175

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项公式为an=2n-11(n∈N*),则|a1|+|a2|+…+|an|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在正方体ABCD A1B1C1D1中,M、N分别是棱C1D1,C1C的中点.给出以下四个结论:
①直线AM与直线C1C相交;
②直线AM与直线DD1异面;
③直线AM与直线BN平行;
④直线BN与直线MB1异面.
其中正确结论的序号为
 
(填入所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

设m>1,已知在约束条件
y≥x
y≤mx
x+y≤1
下,目标函数z=x2+y2的最大值为
2
3
,则实数m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(仅文科生做)对具有线性相关关系的变量x和y,测得一组数据如下:
x24568
y3040605070
若已求得它们的回归方程的
b
为6.5,则这条直线的回归方程为
 

查看答案和解析>>

同步练习册答案