精英家教网 > 高中数学 > 题目详情
袋中有4个白球,6个红球,在抽取这些球的时候谁也无法看到球的颜色,现先由甲取出3个球,并且取出的球将不再放回原袋中,再由乙取出4个球,若规定取得白球多者获胜,试求甲获胜的概率.

解:甲获胜包括以下三个事件:

(1)甲取3个白球必胜,其概率为P1=;                             

(2)甲取出2个白球获胜是在乙取1个白球3个红球或4个红球的情况下发生的,其概率为

P2=;                                             

(3)甲取1个白球获胜是在乙取4个红球的情况下发生的,

其概率为P3==.                                              

由于这3个事件互斥,所以甲获胜的概率为

P=P1+P2+P3=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

[理]口袋中有4个白球,n个红球,从中随机地摸出两个球,这两个球颜色相同的概率大于0.6,则n的最小值为(  )
A、13B、14C、15D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•乐山二模)甲、乙两人进行两种游戏,两种游戏的规则由下表给出:(球的大小都相同)
游戏1 游戏2
裁判的口袋中有4个白球和5个红球 甲的口袋中有6个白球和2个红球
乙的口袋中有3个白球和5个红球
由裁判摸两次,每次摸一个,记下颜色后放回 每人都从自己的口袋中摸一个球
摸出的两球同色→甲胜
摸出的两球不同色→乙胜
摸出的两球同色→甲胜
摸出的两球不同色→乙胜
(1)分别求出在游1中甲、乙获胜的概率;
(2)求出在游戏2中甲获胜的概率,并说明这两个游戏哪个游戏更公平.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中有4个白球,6个红球,在抽取这些球的时候谁也无法看到球的颜色,现先由甲取出3个球,并且取出的球将不再放回原袋中,再由乙取出4个球,若规定取得白球多者获胜,试求甲获胜的概率.

查看答案和解析>>

科目:高中数学 来源:2012年四川省乐山市高考数学二模试卷(文科)(解析版) 题型:解答题

甲、乙两人进行两种游戏,两种游戏的规则由下表给出:(球的大小都相同)
游戏1游戏2
裁判的口袋中有4个白球和5个红球甲的口袋中有6个白球和2个红球
乙的口袋中有3个白球和5个红球
由裁判摸两次,每次摸一个,记下颜色后放回每人都从自己的口袋中摸一个球
摸出的两球同色→甲胜
摸出的两球不同色→乙胜
摸出的两球同色→甲胜
摸出的两球不同色→乙胜
(1)分别求出在游1中甲、乙获胜的概率;
(2)求出在游戏2中甲获胜的概率,并说明这两个游戏哪个游戏更公平.

查看答案和解析>>

同步练习册答案