精英家教网 > 高中数学 > 题目详情

【题目】为弘扬新时代的中国女排精神.甲、乙两个女排校队举行一场友谊比赛,采用五局三胜制(即某队先赢三局则获胜,比赛随即结束).若两队的竞技水平和比赛状态相当,且每局比赛相互独立,则比赛结束时已经进行的比赛局数的数学期望是______.

【答案】

【解析】

设比赛结束时已经进行的比赛局数为时,表示甲连赢三局或乙连赢三局,比赛结束.

时,有两种情况:前三局中甲赢2局输1局,第四局甲赢;前三局中乙赢2局输1局,第四局乙赢. 时,有两种情况:前四局中甲赢2局输2局,第五局甲赢;前四局中乙赢2局输2局,第五局乙赢.

解:因为两队的竞技水平和比赛状态相当,所以每场比赛甲赢或乙赢的概率都是0.5

设比赛结束时已经进行的比赛局数为,则的可能取值为345

的分布列为:

3

4

5

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】今年,新型冠状病毒来势凶猛,老百姓一时间谈毒色变,近来,有关喝白酒可以预防病毒的说法一直在民间流传,更有人拿出字的繁体字进行解读为:医治瘟疫要喝酒,为了调查喝白酒是否有助于预防病毒,我们调查了1000人的喝酒生活习惯与最终是否得病进行了统计,表格如下:

每周喝酒量(两)

人数

100

300

450

100

规定:①每周喝酒量达到4两的叫常喝酒人,反之叫不常喝酒人;

②每周喝酒量达到8两的叫有酒瘾的人.

1)求值,从每周喝酒量达到6两的人中按照分层抽样选出6人,再从这6人中选出2人,求这2人中无有酒瘾的人的概率;

2)请通过上述表格中的统计数据,填写完下面的列联表,并通过计算判断是否能在犯错误的概率不超过0.1的前提下认为是否得病与是否常喝酒有关?并对民间流传的说法做出你的判断.

常喝酒

不常喝酒

合计

得病

不得病

250

650

合计

参考公式:,其中

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lnxsinx,记fx)的导函数为f'x).

1)若hx)=axf'x)是(0,+∞)上的单调递增函数,求实数a的取值范围;

2)若x0,2π),试判断函数fx)的极值点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在一旅游区内原有两条互相垂直且相交于点O的道路l1l2,一自然景观的边界近似为圆形,其半径约为1千米,景观的中心Cl1l2的距离相等,点C到点O的距离约为10千米.现拟新建四条游览道路方便游客参观,具体方案:在线段OC上取一点P,新建一条道路OP,并过点P新建两条与圆C相切的道路PMPNMN为切点),同时过点P新建一条与OP垂直的道路ABAB分别在l1l2上).为促进沿途旅游经济,新建道路长度之和越大越好,求新建道路长度之和的最大值.(所有道路宽度忽略不计)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(.

(Ⅰ)若函数有且只有一个零点,求实数的取值范围;

(Ⅱ)设,若,若函数对恒成立,求实数的取值范围.是自然对数的底数,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数在区间内恰好有奇数个零点,则实数k的所有取值之和为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题12分)

AB是治疗同一种疾病的两种药,用若干试验组进行对比试验。每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效。若在一个试验组中,服用A有效的小白鼠只数比服用B有效的多,就称该试验组为甲类组。设每只小白鼠服用A有效的概率为,服用B有效的概率为

()求一个试验组为甲类组的概率;

() 观察3个试验组,用表示这3个试验组中甲类组的个数,求的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,且.

1)证明:.

2)若,试在棱上确定一点,使与平面所成角的正弦值为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)当时,判断并说明函数的零点个数.若函数所有零点均在区间内,求的最小值.

查看答案和解析>>

同步练习册答案