精英家教网 > 高中数学 > 题目详情

【题目】如图,在一旅游区内原有两条互相垂直且相交于点O的道路l1l2,一自然景观的边界近似为圆形,其半径约为1千米,景观的中心Cl1l2的距离相等,点C到点O的距离约为10千米.现拟新建四条游览道路方便游客参观,具体方案:在线段OC上取一点P,新建一条道路OP,并过点P新建两条与圆C相切的道路PMPNMN为切点),同时过点P新建一条与OP垂直的道路ABAB分别在l1l2上).为促进沿途旅游经济,新建道路长度之和越大越好,求新建道路长度之和的最大值.(所有道路宽度忽略不计)

【答案】千米

【解析】

PCM,用表示出各道路长,并求出和.然后求导,用导数知识求得最大值.

解:连接CM,设PCM,则PCPMPNtan

OPOCPC10AB2OP20

设新建的道路长度之和为

1PC101,设(0)

(0],令

(0]的情况如下表:

(0)

()

0

单调递增

极大值

单调递减

由表可知有极大值也是最大值,此时

.

答:新建道路长度之和的最大值为千米.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,且的图象有一条斜率为1的公切线(e为自然对数的底数).

1)求

2)设函数,证明:当时,有且仅有2个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱锥的侧棱和底面边长相等,在这个正四棱锥的条棱中任取两条,按下列方式定义随机变量的值:

若这两条棱所在的直线相交,则的值是这两条棱所在直线的夹角大小(弧度制);

若这两条棱所在的直线平行,则

若这两条棱所在的直线异面,则的值是这两条棱所在直线所成角的大小(弧度制).

(1)求的值;

(2)求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率,左焦点为,右顶点为,过点的直线交椭圆于两点,若直线垂直于轴时,有.

(1)求椭圆的方程;

(2)设直线 上两点 关于轴对称,直线与椭圆相交于点异于点),直线轴相交于点.若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2019年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示:

1)由折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司20204月份的利润;

2)甲公司新研制了一款产品,需要采购一批新型材料,现有AB两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料的使用寿命不同,现对AB两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:

经甲公司测算平均每件新型材料每月可以带来6万元收人入,不考虑除采购成本之外的其他成本,A型号材料每件的采购成本为10万元,B型号材料每件的采购成本为12万元.假设每件新型材料的使用寿命都是整月数,且以频率作为每件新型材料使用寿命的概率,如果你是甲公司的负责人,以每件新型材料产生利润的平均值为决策依据,你会选择采购哪款新型材料?

参考数据:.

参考公式:回归直线方程,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年4月25日-27日,北京召开第二届“一带一路”国际高峰论坛,组委会要从6个国内媒体团和3个国外媒体团中选出3个媒体团进行提问,要求这三个媒体团中既有国内媒体团又有国外媒体团,且国内媒体团不能连续提问,则不同的提问方式的种数为 ( )

A. 198B. 268C. 306D. 378

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为弘扬新时代的中国女排精神.甲、乙两个女排校队举行一场友谊比赛,采用五局三胜制(即某队先赢三局则获胜,比赛随即结束).若两队的竞技水平和比赛状态相当,且每局比赛相互独立,则比赛结束时已经进行的比赛局数的数学期望是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为边长为2的菱形,平面为棱上一点,且.

1)求证:

2)求二面角的余弦值;

3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据某地区气象水文部门长期统计,可知该地区每年夏季有小洪水的概率为0.25,有大洪水的概率为0.05.

1)从该地区抽取的年水文资料中发现,恰好3年无洪水事件的概率与恰好4年有洪水事件的概率相等,求的值;

2)今年夏季该地区某工地有许多大型设备,遇到大洪水时要损失60000元,遇到小洪水时要损失20000.为保护设备,有以下3种方案:

方案1:修建保护围墙,建设费为3000元,但围墙只能防小洪水.

方案2:修建保护大坝,建设费为7000元,能够防大洪水.

方案3:不采取措施.

试比较哪一种方案好,请说明理由.

查看答案和解析>>

同步练习册答案