【题目】已知曲线
的极坐标方程是
,以极点为原点,极轴为
轴非负半轴建立平面直角坐标系,直线
的参数方程为
(
为参数).
(1)写出曲线
的直角坐标方程和直线
的普通方程;
(2)在(1)中,设曲线
经过伸缩变换
得到曲线
,设曲线
上任意一点为
,当点
到直线
的距离取最大值时,求此时点
的直角坐标.
【答案】(1)
,
;(2)
.
【解析】
(1)由
可将曲线
的极坐标方程化为直角坐标方程,在直线
的参数方程中消去参数
可将直线
的参数方程化为普通方程;
(2)利用伸缩变换求得曲线
的普通方程,进而可得出曲线
的参数方程,设点
,利用点到直线的距离公式结合辅助角公式、正弦函数的有界性可求得点
到直线
的距离的最大值,并求出对应的点
的坐标.
(1)将曲线
的极坐标方程化为
,由
,
所以,曲线
的直角坐标方程为
.
在直线
的参数方程中消去参数
得
,
所以,直线
的普通方程为
;
(2)由伸缩变换
得
带入圆的方程
得
,
化简得曲线
,其参数方程为
(
为参数,且
),
设点
,
点
到直线
距离为:
,
,则
,所以,当
时,即当
时,
取最大值,即
,
此时,点
的坐标为
.
科目:高中数学 来源: 题型:
【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图(如图①)、90后从事互联网行业岗位分布条形图(如图②),则下列结论中不一定正确的是( )
![]()
注:90后指1990年及以后出生,80后指1980~1989年之间出生,80前指1979年及以前出生.
A.互联网行业从业人员中90后占一半以上
B.互联网行业中从事技术岗位的人数超过总人数的20%
C.互联网行业中从事运营岗位的人数90后比80前多
D.互联网行业中从事技术岗位的人数90后比80后多
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
时代悄然来临,为了研究中国手机市场现状,中国信通院统计了2019年手机市场每月出货量以及与2018年当月同比增长的情况,得到如下统计图,根据该统计图,下列说法错误的是( )
![]()
A.2019年全年手机市场出货量中,5月份出货量最多
B.2019年下半年手机市场各月份出货量相对于上半年各月份波动小
C.2019年全年手机市场总出货量低于2018年全年总出货量
D.2018年12月的手机出货量低于当年8月手机出货量
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】七巧板是中国古代劳动人民的发明,其历史至少可以追溯到公元前一世纪,后清陆以湉《冷庐杂识》卷一中写道“近又有七巧图,其式五,其数七,其变化之式多至千余”在18世纪,七巧板流传到了国外,被誉为“东方魔板”,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.完整图案为一正方形(如图):五块等腰直角三角形、一块正方形和一块平行四边形,如果在此正方形中随机取一点,那么此点取自阴影部分的概率是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)为奇函数,且当x≥0时,f(x)=ex﹣cosx,则不等式f(2x﹣1)+f(x﹣2)>0的解集为( )
A.(﹣∞,1)B.(﹣∞,
)C.(
,+∞)D.(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
,
、
分别为椭圆C的左、右焦点且![]()
![]()
(1)求椭圆C的方程;
(2)直线
平行于OP(O为原点),且与椭圆C交于两点A、B,与直线x=2交于点M(M介于A、B两点之间).
(I)当△PAB面积最大时,求
的方程;
(II)求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过
轴正半轴上一点
做直线与抛物线
交于
,
,
两点,且满足
,过定点
与点
做直线
与抛物线交于另一点
,过点
与点
做直线
与抛物线交于另一点
.设三角形
的面积为
,三角形
的面积为
.
(1)求正实数
的取值范围;
(2)连接
,
两点,设直线
的斜率为
;
(ⅰ)当
时,直线
在
轴的纵截距范围为
,则求
的取值范围;
(ⅱ)当实数
在(1)取到的范围内取值时,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com