精英家教网 > 高中数学 > 题目详情

【题目】轴正半轴上一点做直线与抛物线交于两点,且满足,过定点与点做直线与抛物线交于另一点,过点与点做直线与抛物线交于另一点.设三角形的面积为,三角形的面积为.

1)求正实数的取值范围;

2)连接两点,设直线的斜率为

(ⅰ)当时,直线轴的纵截距范围为,则求的取值范围;

(ⅱ)当实数在(1)取到的范围内取值时,求的取值范围.

【答案】12)(ⅰ)(ⅱ)

【解析】

1)设过点的直线为,与抛物线联立可得,利用韦达定理可得,则可得,代入,进而由求解即可;

2)(ⅰ)设过点的直线为,过点的直线,分别与抛物线联立,利用韦达定理和直线的斜率公式可得,根据直线轴的纵截距范围为,即可求得的范围,进而得到,即的范围;

(ⅱ)由,根据(1)和(ⅰ)求解即可.

1)设过点的直线为,

联立可得,,

,,

所以,,

因为,所以,

解得

2)由题,设,,,,

(ⅰ)设过点的直线为,过点的直线,

联立可得,

联立可得,

所以,

所以,

因为直线轴的纵截距范围为,设截距为,

因为,,所以,

(ⅱ),,

由(1)可知,由(ⅰ)可知,

因为,

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】新型冠状病毒蔓延以来,世界各国都在研制疫苗,某专家认为,某种抗病毒药品对新型冠状病毒具有抗病毒、抗炎作用,假如规定每天早上700和晚上700各服药一次,每次服用该药药量700毫克具有抗病毒功效,若人的肾脏每12小时从体内滤出这种药的70%,该药在人体内含量超过1000毫克,就将产生副作用,若人长期服用这种药,则这种药__________(填“会”或者“不会”)对人体产生副作用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为原点,极轴为轴非负半轴建立平面直角坐标系,直线的参数方程为为参数).

1)写出曲线的直角坐标方程和直线的普通方程;

2)在(1)中,设曲线经过伸缩变换得到曲线,设曲线上任意一点为,当点到直线的距离取最大值时,求此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则关于的方程)的实根个数(

A.B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线,曲线为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系.

1)求的极坐标方程;

2)射线的极坐标方程为,若分别与交于异于极点的两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且经过点,两个焦点分别为.

1)求椭圆的方程;

2)过的直线与椭圆相交于两点,若的内切圆半径为,求以为圆心且与直线相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某水果批发商经销某种水果(以下简称水果),购入价为300/袋,并以360/袋的价格售出,若前8小时内所购进的水果没有售完,则批发商将没售完的水果以220/袋的价格低价处理完毕(根据经验,2小时内完全能够把水果低价处理完,且当天不再购入).该水果批发商根据往年的销量,统计了100水果在每天的前8小时内的销售量,制成如下频数分布条形图.

表示水果一天前8小时内的销售量,表示水果批发商一天经营水果的利润,表示水果批发商一天批发水果的袋数.

1)若,求的函数解析式;

2)假设这100天中水果批发商每天购入水果15袋或者16袋,分别计算该水果批发商这100天经营水果的利润的平均数,以此作为决策依据,每天应购入水果15袋还是16袋?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,直线过右焦点,过点的直线交椭圆两点(均不为顶点)

1)求椭圆的方程;

2)已知是椭圆的右顶点,直线,若直线与直线交于点直线与直线交于点,试判断是否为定值,若是,求出定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥中,为等腰直角三角形,平面,且分别为的中点.

1)求证:直线平面

2)求锐二面角的余弦值.

查看答案和解析>>

同步练习册答案