【题目】在直角坐标系
中,曲线
,曲线
(
为参数),以坐标原点
为极点,以
轴的正半轴为极轴建立极坐标系.
(1)求
的极坐标方程;
(2)射线
的极坐标方程为
,若
分别与
交于异于极点的
两点,求
的最大值.
科目:高中数学 来源: 题型:
【题目】已知函数
,且x=0是f(x)的极值点.
(1)求f(x)的最小值;
(2)是否存在实数b,使得关于x的不等式ex<bx+f(x)在(0,+∞)上恒成立?若存在,求出b的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】七巧板是中国古代劳动人民的发明,其历史至少可以追溯到公元前一世纪,后清陆以湉《冷庐杂识》卷一中写道“近又有七巧图,其式五,其数七,其变化之式多至千余”在18世纪,七巧板流传到了国外,被誉为“东方魔板”,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.完整图案为一正方形(如图):五块等腰直角三角形、一块正方形和一块平行四边形,如果在此正方形中随机取一点,那么此点取自阴影部分的概率是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
,
、
分别为椭圆C的左、右焦点且![]()
![]()
(1)求椭圆C的方程;
(2)直线
平行于OP(O为原点),且与椭圆C交于两点A、B,与直线x=2交于点M(M介于A、B两点之间).
(I)当△PAB面积最大时,求
的方程;
(II)求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某科研团队对
例新冠肺炎确诊患者的临床特征进行了回顾性分析.其中
名吸烟患者中,重症人数为
人,重症比例约为
;
名非吸烟患者中,重症人数为
人,重症比例为
.根据以上数据绘制
列联表,如下:
吸烟人数 | 非吸烟人数 | 总计 | |
重症人数 | 30 | 120 | 150 |
轻症人数 | 100 | 800 | 900 |
总计 | 130 | 920 | 1050 |
(1)根据列联表数据,能否在犯错误的概率不超过
的前提下认为新冠肺炎重症和吸烟有关?
(2)已知每例重症患者平均治疗费用约为
万元,每例轻症患者平均治疗费用约为
万元.现有吸烟确诊患者20人,记这
名患者的治疗费用总和为
,求
.
附:
|
|
|
|
|
|
|
|
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过
轴正半轴上一点
做直线与抛物线
交于
,
,
两点,且满足
,过定点
与点
做直线
与抛物线交于另一点
,过点
与点
做直线
与抛物线交于另一点
.设三角形
的面积为
,三角形
的面积为
.
(1)求正实数
的取值范围;
(2)连接
,
两点,设直线
的斜率为
;
(ⅰ)当
时,直线
在
轴的纵截距范围为
,则求
的取值范围;
(ⅱ)当实数
在(1)取到的范围内取值时,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在公比大于0的等比数列{an}中,已知a3a5=a4,且a2,3a4,a3成等差数列.
(1)求{an}的通项公式;
(2)已知Sn=a1a2…an,试问当n为何值时,Sn取得最大值,并求Sn的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知口袋里装有4个大小相同的小球,其中两个标有数字1,两个标有数字2.
(1)从口袋里任意取一球,求取到标有数字2的球的概率;
(2)第一次从口袋里任意取一球,放回口袋里后第二次再任意取一球,记第一次与第二次取到小球上的数字之和为
.当
为何值时,其发生的概率最大?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,点A是直线
上的动点,过
作直线
,
,线段
的垂直平分线与
交于点
.
(1)求点
的轨迹
的方程;
(2)若点
,
是直线
上两个不同的点,且
的内切圆方程为
,直线
的斜率为
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com