精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线,曲线为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系.

1)求的极坐标方程;

2)射线的极坐标方程为,若分别与交于异于极点的两点,求的最大值.

【答案】1的极坐标方程是的极坐标方程是. 2

【解析】

1)利用的直角坐标方程化为极坐标方程;先把的参数方程化为普通方程,再化为极坐标方程;

2)分别联立曲线的极坐标方程与,即可求得,,再利用二次函数的性质求得的最大值,进而求解.

解:(1)因为,

所以可化为,

整理得,

为参数),则为参数),化为普通方程为,则极坐标方程为,即.

所以的极坐标方程是,的极坐标方程是.

2)由(1)知,

联立可得,

联立可得,

所以,

时,最大值为,所以的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,且x0fx)的极值点.

1)求fx)的最小值;

2)是否存在实数b,使得关于x的不等式exbx+fx)在(0+∞)上恒成立?若存在,求出b的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】七巧板是中国古代劳动人民的发明,其历史至少可以追溯到公元前一世纪,后清陆以湉《冷庐杂识》卷一中写道近又有七巧图,其式五,其数七,其变化之式多至千余18世纪,七巧板流传到了国外,被誉为东方魔板,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.完整图案为一正方形(如图):五块等腰直角三角形、一块正方形和一块平行四边形,如果在此正方形中随机取一点,那么此点取自阴影部分的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点分别为椭圆C的左、右焦点且

1)求椭圆C的方程;

2)直线平行于OPO为原点),且与椭圆C交于两点AB,与直线x2交于点MM介于AB两点之间).

I)当PAB面积最大时,求的方程;

II)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科研团队对例新冠肺炎确诊患者的临床特征进行了回顾性分析.其中名吸烟患者中,重症人数为人,重症比例约为名非吸烟患者中,重症人数为人,重症比例为.根据以上数据绘制列联表,如下:

吸烟人数

非吸烟人数

总计

重症人数

30

120

150

轻症人数

100

800

900

总计

130

920

1050

(1)根据列联表数据,能否在犯错误的概率不超过的前提下认为新冠肺炎重症和吸烟有关?

(2)已知每例重症患者平均治疗费用约为万元,每例轻症患者平均治疗费用约为万元.现有吸烟确诊患者20人,记这名患者的治疗费用总和为,求.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】轴正半轴上一点做直线与抛物线交于两点,且满足,过定点与点做直线与抛物线交于另一点,过点与点做直线与抛物线交于另一点.设三角形的面积为,三角形的面积为.

1)求正实数的取值范围;

2)连接两点,设直线的斜率为

(ⅰ)当时,直线轴的纵截距范围为,则求的取值范围;

(ⅱ)当实数在(1)取到的范围内取值时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在公比大于0的等比数列{an}中,已知a3a5a4,且a23a4a3成等差数列.

1)求{an}的通项公式;

2)已知Sna1a2an,试问当n为何值时,Sn取得最大值,并求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知口袋里装有4个大小相同的小球,其中两个标有数字1,两个标有数字2

1)从口袋里任意取一球,求取到标有数字2的球的概率;

2)第一次从口袋里任意取一球,放回口袋里后第二次再任意取一球,记第一次与第二次取到小球上的数字之和为.当为何值时,其发生的概率最大?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点A是直线上的动点,过作直线,线段的垂直平分线与交于点.

1)求点的轨迹的方程;

2)若点是直线上两个不同的点,且的内切圆方程为,直线的斜率为,求的取值范围.

查看答案和解析>>

同步练习册答案