精英家教网 > 高中数学 > 题目详情

【题目】在公比大于0的等比数列{an}中,已知a3a5a4,且a23a4a3成等差数列.

1)求{an}的通项公式;

2)已知Sna1a2an,试问当n为何值时,Sn取得最大值,并求Sn的最大值.

【答案】1an24nnN*;(2)当n34时,Sn取得最大值64

【解析】

1)设{an}的公比为q,(q0),运用等比数列的通项公式和等差数列的中项性质,解方程可得首项和公比,即可得到所求通项公式;

2)由等比数列的通项公式和等差数列的求和公式,可得Sn,结合二次函数的最值求法,可得所求最大值和n的值.

1)设{an}的公比为

a3a5a42a4,可得a41,即a1q31

因为a23a4a3成等差数列,所以a2+a36a4,即a1q+a1q26a1q3,即6q2q10

解得(舍去),所以a18

所以.

2)由(1)知

所以

又由

所以当时,取得最大值,最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】分形几何是一门以不规则几何形态为研究对象的几何学,科赫曲线是比较典型的分形图形,1904年瑞典数学家科赫第一次描述了这种曲线,因此将这种曲线称为科赫曲线.其生成方法是:(I)将正三角形(图(1))的每边三等分,以每边三等分后的中间的那一条线段为一边,向形外作等边三角形,并将这“中间一段”去掉,得到图(2);(II)将图(2)的每边三等分,重复上述的作图方法,得到图(3);(Ⅲ)再按上述方法继续做下去……,设图(1)中的等边三角形的边长为1,并且分别将图(1)、图(2)、图(3)、…、图(n)、…中的图形依次记作,…,,…,设的周长为,则为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体ABCD中,ABCBCD均是边长为1的等边三角形,已知四面体ABCD的四个顶点都在同一球面上,且AD是该球的直径,则四面体ABCD的体积为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线,曲线为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系.

1)求的极坐标方程;

2)射线的极坐标方程为,若分别与交于异于极点的两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是直角梯形,且是正三角形,的中点.

1)求证:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某水果批发商经销某种水果(以下简称水果),购入价为300/袋,并以360/袋的价格售出,若前8小时内所购进的水果没有售完,则批发商将没售完的水果以220/袋的价格低价处理完毕(根据经验,2小时内完全能够把水果低价处理完,且当天不再购入).该水果批发商根据往年的销量,统计了100水果在每天的前8小时内的销售量,制成如下频数分布条形图.

表示水果一天前8小时内的销售量,表示水果批发商一天经营水果的利润,表示水果批发商一天批发水果的袋数.

1)若,求的函数解析式;

2)假设这100天中水果批发商每天购入水果15袋或者16袋,分别计算该水果批发商这100天经营水果的利润的平均数,以此作为决策依据,每天应购入水果15袋还是16袋?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年春节前后,中国爆发新型冠状病毒(SARS-Cov-2)如图所示为124日至216日中国内地(除湖北以外的)感染新型冠状病毒新增人数的折线图,为了预测分析数据的变化规律,建立了与时间变量的不同时间段的两个线性回归模型.根据124日至23日的数据(时间变量的值依次为1234567891011)建立模型①:;根据24日至216日的数据(时间变量的值依次为12131415161718192021222324)建立模型②:.

1

24

1

25

1

26

1

27

1

28

1

29

1

30

1

31

2

1

2

2

2

3

1

2

3

4

5

6

7

8

9

10

11

332

174

298

337

448

593

690

737

720

648

926

2

4

2

5

2

6

2

7

2

8

2

9

2

10

2

11

2

12

2

13

2

14

2

15

2

16

12

13

14

15

16

17

18

19

20

21

22

23

24

830

741

693

683

559

464

431

377

377

299

259

211

160

1)求出两个回归直线方程;(计算结果取整数)

2)中国政府为了人民的生命安全,听取专家意见,了解了病毒信息,并迅速做出一系列的隔离防护措施,但新冠状病毒在世界范围内爆发时,某些欧美国家采取放任的态度,不治疗、不隔离、不检测,甚至不公布,请你用以上数据说明采取一系列措施的必要性,不采取措施的后果.

参考数据:

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求曲线处的切线方程;

2)讨论在区间上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}{bn}中,anbn+nbn=﹣an+1.

1)证明:数列{an+3bn}是等差数列.

2)求数列的前n项和Sn.

查看答案和解析>>

同步练习册答案