精英家教网 > 高中数学 > 题目详情

(满分16分)
记函数f(x)的定义域为D,若存在,使成立,则称以为坐标的点为函数图象上的不动点。
(1)若函数的图象上有两个关于原点对称的不动点,求应满足的条件;
(2)下述结论“若定义在R上的奇函数f(x)的图象上存在有限个不动点,则不动点有奇数个”是否正确?若正确,请给予证明,并举出一例;若不正确,请举出一反例说明


(1)
(2)证明略

解析解:(1)由, …………………………………………2分
整理得   ……………………………………4分
由题意知方程(*)有两个互为相反数的根,所以………6分
,……………………………………………………8分
应满足……………………………………………………10分
(2)结论正确。……………………………………………………12分
证明:为奇函数,,取,得
即(0,0)为函数的一个不动点,设函数除0以外还有不动点

,故也为函数的不动点。…………………14分
综上,若定义在R上的奇函数图象上存在有限个不动点,则不动点有奇数个。
例如:。…………………………………………………16分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分15分)
已知:函数(a、b、c是常数)是奇函数,且满足
(1)求a、b、c的值;
(2)试判断函数f(x)在区间(0,)上的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
医学上为研究某种传染病传播过程中病毒细胞的发展规律及其预防,将病毒细胞注入一只小白鼠体内进行实验,经检测,病毒细胞在体内的总数与天数的关系记录如下表.已知该种病毒细胞在小白鼠体内的个数超过的时候小白鼠将死亡.但注射某种药物,将可杀死此时其体内该病毒细胞的.

(Ⅰ) 为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?(精确到天)
(Ⅱ)第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(精确到天)
(参考数据:)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的最大值和最小正周期;    
(2)设A,B,C为三个内角,若,,且C为锐角,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)求函数的单调区间及极值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数f(x)=(x∈R),P1(x1,y1),P2(x2,y2)是函数y=f(x)图像上两点,且线段P1P2中点P的横坐标为
(1)求证P的纵坐标为定值;   (4分)
(2)若数列{}的通项公式为=f()(m∈N,n=1,2,3,…,m),求数列{}的前m项和;    (5分)
(3)若m∈N时,不等式横成立,求实数a的取值范围。(3分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知函数
(1)判断的奇偶性并证明;
(2)若的定义域为[](),判断在定义域上的增减性,并加以证明;
(3)若,使的值域为[]的定义域区间[]()是否存在?若存在,求出[],若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)
讨论a,b的取值对一次函数y=ax+b单调性和奇偶性的影响,并画出草图。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本大题满分12分)
某公司预计全年分批购入每台价值为2000元的电视机共3600台,每批都购入x台,且每批均需付运费400元,储存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比。若每批购入400台,则全年需用去运费和保管费43600元。现在全年只有24000元资金用于支付运费和保管费,请问能否恰当安排每批进货的数量,使资金够用?写出你的结论并说明理由

查看答案和解析>>

同步练习册答案