精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,已知焦距为4的椭圆的左、右顶点分别为A、B,椭圆C的右焦点为F,过F作一条垂直于x轴的直线与椭圆相交于R、S,若线段RS的长为
(1)求椭圆C的方程;
(2)若椭圆C上存在两个不同的点关于直线l:y=9x+m对称,求实数m的取值范围.
(3)若P为椭圆C在第一象限的动点,过点P作圆x2+y2=5的两条切线PA、PB,切点为A、B,直线AB与x轴、y轴分别交于点M、N,求△MON(O为坐标原点)面积的最小值.
【答案】分析:(1)由题意得,c=2,故a2-b2=4,又椭圆过点(2,),代入椭圆方程,列方程求解a,b即可求椭圆C的方程;
(2)设D、E是椭圆C上关于l:y=9x+m对称的点,设直线DE的方程为;联立直线DE的方程与椭圆方程,根据判别式大于0求出n的范围;再结合D,E的中点在直线l上得到m和n的关系,即可求实数m的取值范围;
(3)设出P,A,B的坐标.得到直线PA与直线PB的方程,进而得到直线AB的方程,求出点M、N的坐标,表示出△MON的面积;再结合P为椭圆C在第一象限的动点即可求出面积的最小值.
解答:解:(1)依题意,椭圆过点,故,解得.…(3分)
椭圆C的方程为.…(4分)
(2)设D、E是椭圆C上关于l:y=9x+m对称的点,设直线DE的方程为
联系方程得:,由△>0得
又DE的中点在直线l上,代入得
代入△得
(3)设P(x,y),A(x1,y1),B(x2,y2
则直线PA:x1x+y1y=5,直线PB:x2x+y2y=5
所以,直线AB:xx+yy=5,故,所以
,当且仅当时等号成立.
此时
点评:本题综合考查椭圆的性质及其应用、直线与椭圆的位置关系及直线,解题时要认真审题,注意运用方程思想等数学思想,同时考查了学生的基本运算能力、运算技巧、逻辑推理能力,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案