精英家教网 > 高中数学 > 题目详情
7.已知等比数列{an}中,a3a9=2a52,且a3=2,则a5=(  )
A.-4B.4C.-2D.2

分析 由等比数列项公式推导出${{a}_{5}}^{2}={a}_{1}{a}_{9}$,从而a1=1,由等比中项的性质得${a}_{1}{a}_{5}={{a}_{3}}^{2}$,由此能求出a5

解答 解:∵等比数列{an}中,a3a9=2a52,且a3=2,
∴$2{a}_{9}=2{{a}_{5}}^{2}$.
∵${{a}_{5}}^{2}={a}_{1}{a}_{9}$,∴a1=1,
由等比中项的性质得${a}_{1}{a}_{5}={{a}_{3}}^{2}$,
∴a5=$\frac{{{a}_{3}}^{2}}{{a}_{1}}$=4.
故选:B.

点评 本题考查等比数列的第5项的求法,考查等比数列的通项公式、前n项和公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.对于无穷数列{an},记T={x|x=aj-ai,i<j},若数列{an}满足:“存在t∈T,使得只要am-ak=t(m,k∈N*且m>k),必有am+1-ak+1=t”,则称数列{an}具有性质P(t).
(Ⅰ)若数列{an}满足${a_n}=\left\{{\begin{array}{l}{2n,n≤2}\\{2n-5,n≥3}\end{array}}\right.$判断数列{an}是否具有性质P(2)?是否具有性质P(4)?
(Ⅱ)求证:“T是有限集”是“数列{an}具有性质P(0)”的必要不充分条件;
(Ⅲ)已知{an}是各项为正整数的数列,且{an}既具有性质P(2),又具有性质P(5),求证:存在整数N,使得aN,aN+1,aN+2,…,aN+k,…是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知复数z满足i•z=3-4i(其中i为虚数单位),则|z|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.底面是正方形的四棱锥中P-ABCD中,侧面PAD⊥底面ABCD,且△PAD是等腰直角三角形,其中PA=PD,E,F分别为线段PC,DB的中点,问在线段AB上是否存在点G,使得二面角C-PD-G的余弦值为$\frac{{\sqrt{3}}}{3}$,若存在,请求出点G的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“更相减损术”是出自《九章算术》的一种求最大公约数的算法,如框图中若输入的a、b分别为198、90,则输出的i为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线y=4x与曲线y=x2围成的封闭区域面积为$\frac{32}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数z=$\frac{3-i}{i}$的共轭复数为$\overline{z}$,则$\overline{z}$在复平面内的对应点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C所对的边分别为a,b,c,且B=60°,c=4.
(Ⅰ)若b=6,求角C的正弦值及△ABC的面积;
(Ⅱ)若D,E在线段BC上,且BD=DE=EC,$AE=2\sqrt{3}BD$,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(2sinx-1,sin(2x+$\frac{π}{3}$)),$\overrightarrow{b}$=(1,cos(2x+$\frac{π}{6}$)),$\overrightarrow{c}$=(cosx,1),f(x)=($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$
(1)求函数f(x)在[0,π]上的单调递增区间;
(2)△ABC的角A,B,C的对边长分别为a,b,c,且a2,b2,c2成等差数列,求f(B)的取值范围.

查看答案和解析>>

同步练习册答案