12£®Ä³ÊÐΪÁ˹ÄÀøÊÐÃñ½ÚÔ¼ÓÃË®£¬ÊµÐС°½×ÌÝʽ¡±Ë®¼Û£¬½«¸ÃÊÐÿ»§¾ÓÃñµÄÔÂÓÃË®Á¿»®·ÖΪÈýµµ£ºÔÂÓÃË®Á¿²»³¬¹ý4¶ÖµÄ²¿·Ö°´2Ôª/¶ÖÊÕ·Ñ£¬³¬¹ý4¶Öµ«²»³¬¹ý8¶ÖµÄ²¿·Ö°´4Ôª/¶ÖÊÕ·Ñ£¬³¬¹ý8¶ÖµÄ²¿·Ö°´8Ôª/¶ÖÊÕ·Ñ£®
£¨1£©Çó¾ÓÃñÔÂÓÃË®Á¿·ÑÓÃy£¨µ¥Î»£ºÔª£©¹ØÓÚÔÂÓÃË®Á¿x£¨µ¥Î»£º¶Ö£©µÄº¯Êý½âÎöʽ£»
£¨2£©ÎªÁËÁ˽â¾ÓÃñµÄÓÃË®Çé¿ö£¬Í¨¹ý³éÑù£¬»ñµÃ½ñÄê3Ô·Ý100»§¾ÓÃñÿ»§µÄÓÃË®Á¿£¬Í³¼Æ·ÖÎöºóµÃµ½ÈçͼËùʾµÄƵÂÊ·Ö²¼Ö±·½Í¼£¬ÈôÕâ100»§¾ÓÃñÖУ¬½ñÄê3Ô·ÝÓÃË®·ÑÓò»³¬¹ý16ÔªµÄÕ¼66%£¬Çóa£¬bµÄÖµ£»
£¨3£©ÔÚÂú×ãÌõ¼þ£¨2£©µÄÌõ¼þÏ£¬ÈôÒÔÕâ100»§¾ÓÃñÓÃË®Á¿µÄƵÂÊ´úÌæ¸ÃÔÂÈ«ÊоÓÃñÓû§ÓÃË®Á¿µÄ¸ÅÂÊ£®ÇÒͬ×éÖеÄÊý¾ÝÓøÃ×éÇø¼äµÄÖеãÖµ´úÌæ£®¼ÇΪ¸ÃÊоÓÃñÓû§3Ô·ݵÄÓÃË®·ÑÓã¬ÇóyµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

·ÖÎö £¨1£©ÓÉÌâÒ⣬ÀûÓ÷ֶκ¯ÊýµÄÐÔÖʼ´¿ÉÇóµÃyÓëxµÄº¯Êý½âÎöʽ£»
£¨2£©½áºÏƵÂÊ·Ö²¼Ö±·½Í¼¿ÉÖª£º$\left\{{\begin{array}{l}{0.1+2b+0.3=0.6}\\{2b+2a+0.05=0.4}\end{array}}\right.$£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£»
£¨3£©YµÄ¿ÉÄÜȡֵΪ1£¬3£¬5£¬7£¬9£¬11£¬·Ö±ðÇóµÃ¸ÅÂÊ£¬ÀûÓÃÊýѧÆÚÍû¹«Ê½¼´¿ÉÇóµÃYµÄÊýѧÆÚÍû£®

½â´ð ½â£º£¨1£©µ±0¡Üx¡Ü4ʱ£¬y=2x£»
µ±4£¼x¡Ü8ʱ£¬y=2¡Á4+4¡Á£¨x-4£©=4x-8£¬
µ±x£¾8ʱ£¬y=2¡Á4+4¡Á4+8¡Á£¨x-8£©=8x-40£®
ËùÒÔyÓëxÖ®¼äµÄº¯Êý½âÎöʽΪ£º$y=\left\{{\begin{array}{l}{2x£¬0¡Üx¡Ü4}\\{4x-8£¬4£¼x¡Ü8}\\{8x-40£¬x£¾8}\end{array}}\right.$£»
£¨2£©ÓÉ£¨1£©¿ÉÖª£¬µ±y=16ʱ£¬x=6£¬ÔòP£¨x¡Ü6£©=0.60£¬
½áºÏƵÂÊ·Ö²¼Ö±·½Í¼¿ÉÖª£º$\left\{{\begin{array}{l}{0.1+2b+0.3=0.6}\\{2b+2a+0.05=0.4}\end{array}}\right.$£¬
¡àa=0.075£¬b=0.1£»
£¨3£©ÓÉÌâÒâ¿ÉÖª£ºYµÄ¿ÉÄÜȡֵΪ1£¬3£¬5£¬7£¬9£¬11£®
ÔòP£¨Y=1£©=0.1£¬P£¨Y=3£©=0.2£¬P£¨Y=5£©=0.3£¬P£¨Y=7£©=0.2£¬P£¨Y=9£©=0.15£¬P£¨Y=11£©=0.05£¬
ËùÒÔPµÄ·Ö²¼ÁУº

P1357911
Y0.10.20.30.20.150.05
E£¨Y£©=1¡Á0.1+3¡Á0.2+5¡Á0.3+7¡Á0.2+9¡Á0.15+11¡Á0.05=4.5£¬
yµÄÊýѧÆÚÍûE£¨Y£©=4.5£®

µãÆÀ ±¾Ì⿼²é·Ö¶Îº¯ÊýµÄ¼°ÆµÂÊ·Ö²¼Ö±·½Í¼µÄÓ¦Ó㬿¼²é·Ö²¼Áм°ÊýѧÆÚÍûµÄÇ󷨣¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®¡°´óÖÚ´´Òµ£¬ÍòÖÚ´´Ð¡±ÊÇÀî¿ËÇ¿×ÜÀíÔÚ±¾½ìÕþ¸®¹¤×÷±¨¸æÖÐÏòÈ«¹úÈËÃñ·¢³öµÄ¿ÚºÅ£®Ä³Éú²úÆóÒµ»ý¼«ÏìÓ¦ºÅÕÙ£¬´óÁ¦Ñз¢Ð²úÆ·£¬ÎªÁ˶ÔÐÂÑз¢µÄÒ»Åú²úÆ·½øÐкÏÀí¶¨¼Û£¬½«¸Ã²úÆ·°´ÊÂÏÈÄⶨµÄ¼Û¸ñ½øÐÐÊÔÏú£¬µÃµ½Ò»×éÏúÊÛÊý¾Ý£¨xi£¬yi£©£¨i=1£¬2£¬¡­£¬6£©£¬Èç±íËùʾ£º
ÊÔÏúµ¥¼Ûx£¨Ôª£©456789
²úÆ·ÏúÁ¿y£¨¼þ£©q8483807568
ÒÑÖª$\overline y=\frac{1}{6}\sum_{i=1}^6{y_i}$=80£®
£¨¢ñ£©Çó³öqµÄÖµ£»
£¨¢ò£©ÒÑÖª±äÁ¿x£¬y¾ßÓÐÏßÐÔÏà¹Ø¹ØÏµ£¬Çó²úÆ·ÏúÁ¿y£¨¼þ£©¹ØÓÚÊÔÏúµ¥¼Ûx£¨Ôª£©µÄÏßÐԻع鷽³Ì$\widehaty=\widehatbx+\widehata$£»
£¨¢ó£©ÓÃ$\widehat{y_i}$±íʾÓ㨢ò£©ÖÐËùÇóµÄÏßÐԻع鷽³ÌµÃµ½µÄÓëxi¶ÔÓ¦µÄ²úÆ·ÏúÁ¿µÄ¹À¼ÆÖµ£®µ±ÏúÊÛÊý¾Ý£¨xi£¬yi£©¶ÔÓ¦µÄ²Ð²îµÄ¾ø¶ÔÖµ$|\widehat{y_i}-{y_i}|¡Ü1$ʱ£¬Ôò½«ÏúÊÛÊý¾Ý£¨xi£¬yi£©³ÆÎªÒ»¸ö¡°ºÃÊý¾Ý¡±£®ÏÖ´Ó6¸öÏúÊÛÊý¾ÝÖÐÈÎÈ¡3¸ö£¬Çó¡°ºÃÊý¾Ý¡±¸öÊý¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍûE£¨¦Î£©£®
£¨²Î¿¼¹«Ê½£ºÏßÐԻع鷽³ÌÖÐ$\widehatb$£¬$\widehata$µÄ×îС¶þ³Ë¹À¼Æ·Ö±ðΪ$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$£¬$\widehata=\overline y-\widehatb\overline x$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªº¯Êýf£¨x£©Âú×ãf£¨$\frac{1}{x}$£©+$\frac{1}{x}$f£¨-x£©=2x£¨x¡Ù0£©£¬Ôòf£¨-2£©=£¨¡¡¡¡£©
A£®$-\frac{7}{2}$B£®$\frac{9}{2}$C£®$\frac{7}{2}$D£®$-\frac{9}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÈôÖ±Ïßax+by+1=0£¨a£¾0£¬b£¾0£©¹ýÔ²x2+y2+8x+2y+1=0µÄÔ²ÐÄ£¬Ôò$\frac{1}{a}$+$\frac{4}{b}$µÄ×îСֵΪ16£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®É躯Êýf£¨x£©=|x-2|-|2x+1|£®
£¨¢ñ£©Çó²»µÈʽf£¨x£©£¾0µÄ½â¼¯£»
£¨¢ò£©Èô´æÔÚx0¡ÊR£¬Ê¹µÃf£¨x0£©£¾2m+1£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÈôÔ²x2+y2-2x-4y+1=0¹ØÓÚÖ±Ïßax-by=0£¨a£¾0£¬b£¾0£©¶Ô³Æ£¬ÔòË«ÇúÏß$\frac{y^2}{a^2}-\frac{x^2}{b^2}$=1µÄ½¥½üÏß·½³ÌΪ£¨¡¡¡¡£©
A£®y=2xB£®$y=\frac{1}{2}x$C£®y=¡À2xD£®$y=¡À\frac{1}{2}x$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÈçͼËùʾ£¬ÕýÈý½ÇÐÎABCËùÔÚÆ½ÃæÓëÌÝÐÎBCDEËùÔÚÆ½Ãæ´¹Ö±£¬BE¡ÎCD£¬BE=2CD=4£¬BE¡ÍBC£¬FΪÀâABµÄÖе㣮
£¨1£©ÇóÖ¤£ºCF¡ÍÆ½ÃæABE£»
£¨2£©ÈôÖ±ÏßDAÓëÆ½ÃæABCËù³ÉµÄ½ÇΪ30¡ã£¬ÇóÈýÀâ×¶D-BEFµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªµÈ±ÈÊýÁÐa1£¬a2£¬a3£¬a4Âú×ãa1¡Ê£¨0£¬1£©£¬a2¡Ê£¨1£¬2£©£¬a3¡Ê£¨2£¬4£©£¬Ôòa4µÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨3£¬8£©B£®£¨2£¬16£©C£®£¨4£¬8£©D£®$£¨2\sqrt{2}£¬16£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ö±Ïßy=$\sqrt{2}$xÓëÔ²O£ºx2+y2=1½»ÓÚA¡¢BÁ½µã£®¦Á¡¢¦ÂµÄʼ±ßÊÇxÖáµÄ·Ç¸º°ëÖᣬÖձ߷ֱðÔÚÉäÏßOAºÍOBÉÏ£¬Ôòtan£¨¦Á+¦Â£©µÄֵΪ£¨¡¡¡¡£©
A£®-2$\sqrt{2}$B£®-$\sqrt{2}$C£®0D£®2$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸