精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=|x-2|-|2x+1|.
(Ⅰ)求不等式f(x)>0的解集;
(Ⅱ)若存在x0∈R,使得f(x0)>2m+1,求实数m的取值范围.

分析 (Ⅰ)由题意,|x-2|>|2x+1|.两边平方,不等式可化为3x2+8x-3<0,即可求不等式f(x)>0的解集;
(Ⅱ)若?x0∈R,使得f(x0)>2m+1,等价于f(x)max>2m+1,即可求实数m的取值范围.

解答 解:(Ⅰ)由题意,|x-2|>|2x+1|.
两边平方,不等式可化为3x2+8x-3<0,解得-3$<x<\frac{1}{3}$,
∴不等式的解集为(-3,$\frac{1}{3}$);
(Ⅱ)?x0∈R,使得f(x0)>2m+1,等价于f(x)max>2m+1,
∵f(x)=$\left\{\begin{array}{l}{x+3,x<-\frac{1}{2}}\\{-3x+1,-\frac{1}{2}≤x≤2}\\{-x-3,x>2}\end{array}\right.$,∴f(x)max=f(-$\frac{1}{2}$)=$\frac{5}{2}$
∴$\frac{5}{2}$>2m+1,
∴m<$\frac{3}{4}$.

点评 本题考查绝对值不等式,考查存在性问题,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知全集U=R,集合A={x|x2+x-6>0},B={y|y≤3},则(∁UA)∩B=(  )
A.[-3,3]B.[-1,2]C.[-3,2]D.(-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知曲线C:$\left\{\begin{array}{l}x=\frac{8k}{{1+{k^2}}}\\ y=\frac{{2(1-{k^2})}}{{1+{k^2}}}\end{array}\right.$(k为参数)和直线l:$\left\{\begin{array}{l}x=2+tcosθ\\ y=1+tsinθ\end{array}\right.$(t为参数).
(1)将曲线C的方程化为普通方程;
(2)设直线l与曲线C交于A,B两点,且P(2,1)为弦AB的中点,求弦AB所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设m、n是两条不同的直线,α、β是两个不同的平面,下列命题正确的是(  )
A.若m?α,n?α,且m、n是异面直线,那么n与α相交
B.若α∩β=m,n∥m,且n?α,n?β,则n∥α且n∥β
C.若m?α,n?α,且m∥β,n∥β,则α∥β
D.若m∥α,n∥β,且α∥β,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=Acos(ωx-$\frac{π}{3}$)(A>0,ω>0)相邻两条对称轴相距$\frac{π}{2}$,且f(0)=1.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设α、β∈(0,$\frac{π}{4}$),f(α-$\frac{π}{3}$)=$\frac{10}{13}$,f(β+$\frac{π}{6}$)=$\frac{6}{5}$,求tan(2α-2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某市为了鼓励市民节约用水,实行“阶梯式”水价,将该市每户居民的月用水量划分为三档:月用水量不超过4吨的部分按2元/吨收费,超过4吨但不超过8吨的部分按4元/吨收费,超过8吨的部分按8元/吨收费.
(1)求居民月用水量费用y(单位:元)关于月用水量x(单位:吨)的函数解析式;
(2)为了了解居民的用水情况,通过抽样,获得今年3月份100户居民每户的用水量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年3月份用水费用不超过16元的占66%,求a,b的值;
(3)在满足条件(2)的条件下,若以这100户居民用水量的频率代替该月全市居民用户用水量的概率.且同组中的数据用该组区间的中点值代替.记为该市居民用户3月份的用水费用,求y的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知抛物线C1:y2=ax(a>0)的焦点与双曲线C2:$\frac{x^2}{4}-\frac{y^2}{b^2}=1({b>0})$的右焦点重合,记为F点,点M与点P(4,6)分别为曲线C1,C2上的点,则|MP|+|MF|的最小值为(  )
A.$\frac{5}{2}$B.8C.$\frac{13}{2}$D.$\frac{11}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知菱形ABCD与直角梯形ABEF所在的平面互相垂直,其中BE∥AF,AB⊥AF,AB=BE=$\frac{1}{2}$AF=2,∠CBA=$\frac{π}{3}$.
(Ⅰ)求证:AF⊥BC;
(Ⅱ)线段AB上是否存在一点G,使得直线FG与平面DEF所成的角的正弦值为$\frac{\sqrt{93}}{31}$,若存在,求AG的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知A(-2,0),B(2,0),斜率为k的直线l上存在不同的两点M,N满足:|MA|-|MB|=2$\sqrt{3}$,|NA|-|NB|=2$\sqrt{3}$,且线段MN的中点为(6,1),则k的值为(  )
A.-2B.-$\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

同步练习册答案