精英家教网 > 高中数学 > 题目详情

如图,是半径为2,圆心角为的扇形,是扇形的内接矩形.
(Ⅰ)当时,求的长;
(Ⅱ)求矩形面积的最大值.

(Ⅰ) (Ⅱ) 

解析试题分析:(Ⅰ)由图形的对称性作出辅助线,用三角函数求出相关线段长度;(Ⅱ)设∠EOC=θ,与(Ⅰ)类似用三角函数表示出相关线段长度和矩形ABCD的面积,继而求关于θ的三角函数的最大值.
试题解析:如图,记的中点为E,连结OE,OC,交BC于F,交AD于G,则∠DOG=60°.
设∠EOC=θ(0°<θ<60°).

(Ⅰ)当时,θ=30°.
在Rt△COF中,OF=OCcos30°=,CF=OCsin30°=1.
在Rt△DOG中,DG=CF=1,OG=
所以CD=GF=OF-OG=
(Ⅱ)与(Ⅰ)同理,
BC=2CF=4sinθ,CD=OF-OG=2cosθ-=2cosθ-sinθ.
则矩形ABCD的面积
S=BC·CD=4sinθ(2cosθ-sinθ)=4sin2θ- (1-cos2θ)=sin(2θ+30°)-
因为30°<2θ+30°<150°,故当2θ+30°=90°,
即θ=30°时,S取最大值
考点:1、三角函数恒等变形;2、三角函数的计算和应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的最小值和最小正周期;
(Ⅱ)设的内角的对边分别为,满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数)的最小正周期为.
(1)求的值及函数的单调递增区间;
(2)当时,求函数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.




.
(1)从上述五个式子中选择一个,求出常数
(2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最大值是1,最小正周期是,其图像经过点
(1)求的解析式;
(2)设为△ABC的三个内角,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sin2ωx+sinωxcosωx(ω>0)的最小正周期为π,
(Ⅰ)求ω的值及函数f(x)的单调增区间;
(Ⅱ)求函数f(x)在[0,]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最小正周期为.
(Ⅰ)求的值;
(Ⅱ)求函数在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,倾斜角为的直线与单位圆在第一象限的部分交于点,单位圆与坐标轴交于点,点轴交于点轴交于点,设

(1)用角表示点、点的坐标;
(2)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 的最小正周期为.
(Ⅰ)求的值;
(Ⅱ)讨论在区间上的单调性.

查看答案和解析>>

同步练习册答案