精英家教网 > 高中数学 > 题目详情

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.




.
(1)从上述五个式子中选择一个,求出常数
(2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论.

(1);(2).

解析试题分析:(1)∵②中的15°的2倍是30°,便于计算,可选用②算出a值;(2)观察发现两角之和为
30°,可猜想,再运用降次公式,两角和与差公式,同角三角函数的关系式进行证明.
试题解析:(1)选择②式计算.
(2)猜想的三角恒等式为
.
证明:  
 
 
.
考点:降次公式,两角和与差公式,同角三角函数的关系式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(I)当时,求的最大值和最小值;
(II)设的内角所对的边分别为,且,若向量与向量共线,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为且满足.
(I)求角的大小;
(II)求的最大值,并求取得最大值时角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,.求:
(I)求函数的最小正周期和单调递增区间;
(II)求函数在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数在区间上的最大值和最小值;
(2)若,其中 求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,
(1)求函数的最大值和最小值;
(2)设函数上的图象与轴的交点从左到右分别为,图象的最高点为,
的夹角的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是半径为2,圆心角为的扇形,是扇形的内接矩形.
(Ⅰ)当时,求的长;
(Ⅱ)求矩形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为,已知
(Ⅰ)求的大小;
(Ⅱ)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的一段图象如图所示.

(1)求函数的解析式;
(2)将函数的图象向右平移个单位,得到的图象,求直线与函数的图象在内所有交点的坐标.

查看答案和解析>>

同步练习册答案