精英家教网 > 高中数学 > 题目详情

已知函数f(x)=sin2ωx+sinωxcosωx(ω>0)的最小正周期为π,
(Ⅰ)求ω的值及函数f(x)的单调增区间;
(Ⅱ)求函数f(x)在[0,]上的值域.

(Ⅰ);(Ⅱ).

解析试题分析:(Ⅰ)先化简得,再利用公式可求得的单调增区间为.(Ⅱ)先求得.
试题解析:(Ⅰ) 
,      (2分)
.                  (3分)
.由,得
的单调增区间为.          (5分)
(Ⅱ)由,        (8分)
上的值域为.        (12分)
考点:1.和角、差角、二倍角公式;2.三角函数的值域、单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数的图像关于直线对称,求的最小值;
(2)若存在,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,.求:
(I)求函数的最小正周期和单调递增区间;
(II)求函数在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,
(1)求函数的最大值和最小值;
(2)设函数上的图象与轴的交点从左到右分别为,图象的最高点为,
的夹角的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是半径为2,圆心角为的扇形,是扇形的内接矩形.
(Ⅰ)当时,求的长;
(Ⅱ)求矩形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位有三个工作点,需要建立一个公共无线网络发射点,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为.假定四点在同一平面上.
(1)求的大小;
(2)求点到直线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为,已知
(Ⅰ)求的大小;
(Ⅱ)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,设函数.
(1)求函数的最大值;
(2)在中,角为锐角,角的对边分别为,且的面积为3,,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求值:
(1)已知
的值;
(2)已知,求的值。

查看答案和解析>>

同步练习册答案