精英家教网 > 高中数学 > 题目详情

求值:
(1)已知
的值;
(2)已知,求的值。

(1)32
(2)

解析试题分析:(1)   
=32   
(2)由①,得

②,由①②得
考点:二倍角公式
点评:主要是考查了二倍角公式以及诱导公式的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sin2ωx+sinωxcosωx(ω>0)的最小正周期为π,
(Ⅰ)求ω的值及函数f(x)的单调增区间;
(Ⅱ)求函数f(x)在[0,]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且
(Ⅰ)求sinA的值;
(Ⅱ)若,b=5,求向量方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 的最小正周期为.
(Ⅰ)求的值;
(Ⅱ)讨论在区间上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的定义域及最小正周期;
(2)求的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求的最小正周期及最大值;
(Ⅱ)若,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=sin(ωx+),其中ω>0,||<,若coscos-sinsin =0,且图象的一条对称轴离一个对称中心的最近距离是
(1)求函数f(x)的解析式;
(2)若A,B,C是△ABC的三个内角,且f(A)=-1,求sinB+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,计算:
(1)     (2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设向量
(I)若
(II)设函数

查看答案和解析>>

同步练习册答案