精英家教网 > 高中数学 > 题目详情
已知c>1,若m=n=,则mn之间的关系是

A.mn                          B.m=n                      C.mn                        D.与c的取值有关

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆具有性质:若M、N是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线C′:
x2
a2
-
y2
b2
=1写出具有类似特性的性质,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•南宁二模)设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右两个焦点.
(Ⅰ)若椭圆C上的点A(1,
3
2
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点,Q(0,
1
2
),求|PQ|的最大值;
(Ⅲ)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P在椭圆上任意一点,当直线PM、PN的斜率都存在,并记为KPM、KPN时,那么KPM与KPN之积是与点P位置无关的定值.设对双曲线
x2
a2
-
y2
b2
=1写出具有类似特性的性质(不必给出证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,
3
2
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线
x2
a2
-
y2
b2
=1
写出具有类似特性的性质,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,P是椭圆上任意一点,则当直线PM,PN的斜率都存在时,其乘积恒为定值.类比椭圆,写出双曲线C′:
x2
a2
-
y2
b2
=1(a>0,b>0)
的类似性质,并加以证明.

查看答案和解析>>

同步练习册答案