精英家教网 > 高中数学 > 题目详情
4.设α,β是两个不同的平面,l,m是两条不同的直线,α∩β=m,记α1为直线l与平面α所成的角,A={l|l?β},B={α1|l∈A},若对任意α1∈B,存在α${\;}_{{l}_{0}}$∈B,恒有α1<α${\;}_{{l}_{0}}$,则(  )
A.α⊥βB.α与β不垂直C.l0⊥aD.l0⊥m

分析 首先理解题意,根据线面角的定义,得到两个平面垂直,从而得到l0⊥m.

解答 解:由题意,直线在平面β内,α1为直线l与平面α所成的角,
由于对任意α1∈B,存在α${\;}_{{l}_{0}}$∈B,恒有α1<α${\;}_{{l}_{0}}$,
则直线l0与平面α所成的角是平面β内直线与α所成的角的最大角,故${α}_{{l}_{0}}$为90°,.
即l0⊥m.
故选:D

点评 本题考查了线面角的定义以及范围;属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)是定义在R上的偶函数,且当x≥0时,f(x)=log3(x+1),若f(a2-1)<1,则实数a的取值范围是(  )
A.(-$\sqrt{3}$,$\sqrt{3}$)B.(-1,1)C.(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.方程f(x)=f′(x)的实数根x0叫作函数f(x)的“新驻点”.如果函数g(x)=lnx的“新驻点”为α,那么α满足(  )
A.α=1B.0<α<1C.2<α<3D.1<α<2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.用“数学归纳法”证明:($\frac{1}{n}$)3+($\frac{2}{n}$)3+($\frac{3}{n}$)3+…+($\frac{n}{n}$)3=$\frac{1}{4}$(n+$\frac{1}{n}$)+$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.正三棱锥P-ABC,侧棱长与底面边长相等,F是BC的中点,异面直线AC与PF所成的角为arccos$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中的假命题是(  )
A.若m⊥α,m⊥β,则α∥βB.若m∥n,m⊥α,则n⊥αC.若m⊥β,α⊥β,则m∥αD.若m⊥α,m∥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(-1,3),则2$\overrightarrow{a}$+3$\overrightarrow{b}$的坐标为(1,7).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.集合A={x∈N|x≤4},B={x|x2-4<0},则A∩B=(  )
A.{x|0≤x<2}B.{x|-2<x<2}C.{0,1}D.{-2,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.|a|=|b|是a2=b2的(  )
A.充分条件而非必要条件B.必要条件而非充分条件
C.充要条件D.非充分条件也非必要条件

查看答案和解析>>

同步练习册答案