精英家教网 > 高中数学 > 题目详情
5.已知6件产品中有2件次品,现每次随机抽取1件产品做检测,检测后不放回,则检测3次且恰在第3次检测出第2件次品的方法数是16.(用数字作答)

分析 由题意,第3次为次品,第1,2次,有一个次品,利用排列组合知识,即可求出检测3次且恰在第3次检测出第2件次品的方法数.

解答 解:由题意,第3次为次品,第1,2次,有一个次品,
则检测3次且恰在第3次检测出第2件次品的方法数是C21C41A22=16,
故答案为:16.

点评 本题考查排列组合知识的运用,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥面ABCD,已知∠ABC=45°,AB=2,BC=2$\sqrt{2}$,SB=SC=$\sqrt{3}$.
(1)设平面SCD与平面SAB的交线为l,求证:l∥AB;
(2)求证:SA⊥BC;
(3)求直线SD与面SAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知tan($\frac{π}{4}$+θ)=3,则$\frac{6sinθ-cosθ}{cosθ+2sinθ}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知n∈N*,n>2时,求证:1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$>$\sqrt{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a,b,c均为正实数,求证:
(1)$\frac{1}{a}$+$\frac{1}{b}$≥$\frac{4}{a+b}$;
(2)$\frac{1}{2a}$+$\frac{1}{2b}$+$\frac{1}{2c}$≥$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设a,b,c,d都是正数,求证:(ab+cd)(ac+bd)≥4abcd.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系中,已知圆C1:(x+2)2+y2=m2和圆C2:(x-2)2+y2=4-m2,其中m∈R,且0<m<2.
(I)若m=1,求直线x-$\sqrt{3}$y+1=0被圆C1截得的弦长;
(Ⅱ)过点P(0,b)作直线l,使圆C1和圆C2在l的两侧,且均与1相切,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在如图所示多面体中,平面AEFD⊥平面BEFC,四边形AEFD是边长为2的正方形,EF∥BC,且BE=CF=$\frac{1}{2}$BC=2,G是BC的中点.
(1)求证:EG⊥平面BDF;                        
(2)求此多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列双曲线的标准方程.
(1)与双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1有公共焦点,且过点(3$\sqrt{2}$,2)的双曲线;
(2)以椭圆3x2+13y2=39的焦点为焦点,以直线y=±$\frac{x}{2}$为渐近线的双曲线.

查看答案和解析>>

同步练习册答案