精英家教网 > 高中数学 > 题目详情
10.设a,b,c,d都是正数,求证:(ab+cd)(ac+bd)≥4abcd.

分析 由a,b,c,d都是正数,运用二元均值不等式,可得ab+cd≥2$\sqrt{abcd}$,ac+bd≥2$\sqrt{abcd}$,相乘即可得证.

解答 证明:a,b,c,d都是正数,
可得ab+cd≥2$\sqrt{abcd}$,
ac+bd≥2$\sqrt{abcd}$,
当且仅当ab=cd,且ac=bd,
即a=d,b=c取得等号.
即有(ab+cd)(ac+bd)≥4abcd.

点评 本题考查不等式的证明,注意运用二元均值不等式和不等式的性质,考查推理能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设a为实数,且函数f(x)=(a+cosx)(a-sinx)-1有零点,则a的取值范围是(  )
A.(-∞,-1-$\frac{\sqrt{2}}{2}$)B.[-1+$\frac{\sqrt{2}}{2}$,1-$\frac{\sqrt{2}}{2}$]
C.[1+$\frac{\sqrt{2}}{2}$,+∞)D.[-1-$\frac{\sqrt{2}}{2}$,-1+$\frac{\sqrt{2}}{2}$]∪[1-$\frac{\sqrt{2}}{2}$,1+$\frac{\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列说法中正确的是(  )
A.命题“若x=1,则x2=1”的否定为:“若x=1,则x2≠1”
B.已知y=f(x)是上的可导函数,则“f′(x0)=0”是“x0是函数y=f(x)的极值点”的充分必要条件
C.命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”
D.命题“角α的终边在第一象限,则α是锐角”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a,b,c都是正数,且abc=1,求证:a3+b3+c3≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知6件产品中有2件次品,现每次随机抽取1件产品做检测,检测后不放回,则检测3次且恰在第3次检测出第2件次品的方法数是16.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-2,3),且法向量为$\overrightarrow{n}$=(4,-1)的直线(点法式)方程为4×(x+2)+(-1)×(y-3)=0,化简得4x-y+11=0,类比以上方法,在空间直角坐标系中,经过点B(-2,1,3),且法向量为$\overrightarrow{m}$=(3,-2,4)的平面方程化简后为3x-2y+4z-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义在R上的偶函数f(x)的导函数为f'(x),对定义域内的任意x,都有2f(x)+xf'(x)<2成立,则使得x2f(x)-4f(2)<x2-4成立的x的范围为(  )
A.{x|x≠±2}B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)是定义在R上的偶函数,且f(1-x)=-f(x),当x∈[2,3)时,f(x)=x,则当x∈(-1,0]时,f(x)的解析式为(  )
A.x+4B.x-2C.x+3D.-x+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ-$\frac{π}{3}$)=$\frac{3}{2}$,C与l有且只有一个公共点,求a.

查看答案和解析>>

同步练习册答案