精英家教网 > 高中数学 > 题目详情
19.函数f(x)是定义在R上的偶函数,且f(1-x)=-f(x),当x∈[2,3)时,f(x)=x,则当x∈(-1,0]时,f(x)的解析式为(  )
A.x+4B.x-2C.x+3D.-x+2

分析 根据函数奇偶性的性质求出函数的周期是2的周期函数,根据变量之间的关系进行转化求解即可.

解答 解:∵f(x)是定义在R上的偶函数,且f(1-x)=-f(x),
∴f(1-x)=-f(x)=f(x-1),
则f(x-2)=-f(x-1)=-(-f(x))=f(x),
则函数f(x)是周期为2的周期函数,
则若x∈(-1,0],则-x∈[0,1),-x+2∈[2,3),
即f(x)=f(-x)=f(-x+2),
∵当x∈[2,3)时,f(x)=x,
∴当x∈(-1,0]时,f(x)=f(-x+2)=-x+2,
故选:D

点评 本题主要考查函数解析式的求解,根据函数奇偶性的性质以及条件求出函数的周期性,利用函数奇偶性和周期性的关系将条件进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在锐角△ABC中,a,b,c分别为角A,B,C所对的边,且$\sqrt{2}$a=2csinA.
(1)确定角C的大小;
(2)若c=3,且△ABC的面积为$\frac{{3\sqrt{2}}}{2}$,求a2+b2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设a,b,c,d都是正数,求证:(ab+cd)(ac+bd)≥4abcd.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知x、y满足约束条件$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+3y≤6\end{array}\right.$,若z=log2(2x+y+2)的最大值为(  )
A.8B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在如图所示多面体中,平面AEFD⊥平面BEFC,四边形AEFD是边长为2的正方形,EF∥BC,且BE=CF=$\frac{1}{2}$BC=2,G是BC的中点.
(1)求证:EG⊥平面BDF;                        
(2)求此多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,假设同一组中的每个数据可用该组区间的中点值代替(如分数段[70,80)用数值75代替),则得到体育成绩的折线图(如图).

(I)从体育成绩在[60,70)和[80,90)的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在[60,70)的概率.
(II)体育成绩大于或等于70分的学生被称为“体育良好”.从高一年级全体学生中随机抽取4人,其中“体育良好”的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=2sin(ωx+$\frac{π}{6}}$)(ω>0)与函数g(x)=cos(2x+φ)(|φ|<$\frac{π}{2}}$)的对称轴完全相同,则φ=-$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知定义在(-∞,+∞) 上的函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x.x≥0}\\{f(x+2),x<0}\end{array}\right.$,则方程f(x)+1=log4|x|的实数解的个数是6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设4个正数的和a1+a2+a3+a4=1,求证:$\frac{{a}_{1}^{2}}{{a}_{1}+{a}_{2}}$+$\frac{{a}_{2}^{2}}{{a}_{2}+{a}_{3}}$+$\frac{{a}_{3}^{2}}{{a}_{3}+{a}_{4}}$+$\frac{{a}_{4}^{2}}{{a}_{4}+{a}_{1}}$≥$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案