精英家教网 > 高中数学 > 题目详情
9.设4个正数的和a1+a2+a3+a4=1,求证:$\frac{{a}_{1}^{2}}{{a}_{1}+{a}_{2}}$+$\frac{{a}_{2}^{2}}{{a}_{2}+{a}_{3}}$+$\frac{{a}_{3}^{2}}{{a}_{3}+{a}_{4}}$+$\frac{{a}_{4}^{2}}{{a}_{4}+{a}_{1}}$≥$\frac{1}{2}$.

分析 由条件运用基本不等式可得(a1+a2)+$\frac{4{{a}_{1}}^{2}}{{a}_{1}+{a}_{2}}$≥2$\sqrt{({a}_{1}+{a}_{2})•\frac{4{{a}_{1}}^{2}}{{a}_{1}+{a}_{2}}}$=4a1,同理可得,(a2+a3)+$\frac{4{{a}_{2}}^{2}}{{a}_{2}+{a}_{3}}$≥4a2
(a3+a4)+$\frac{4{{a}_{3}}^{2}}{{a}_{3}+{a}_{4}}$≥4a3,(a4+a1)+$\frac{4{{a}_{4}}^{2}}{{a}_{4}+{a}_{1}}$≥4a4,累加即可得证.

解答 证明:由4个正数的和a1+a2+a3+a4=1,可得
(a1+a2)+$\frac{4{{a}_{1}}^{2}}{{a}_{1}+{a}_{2}}$≥2$\sqrt{({a}_{1}+{a}_{2})•\frac{4{{a}_{1}}^{2}}{{a}_{1}+{a}_{2}}}$=4a1
同理可得,(a2+a3)+$\frac{4{{a}_{2}}^{2}}{{a}_{2}+{a}_{3}}$≥4a2
(a3+a4)+$\frac{4{{a}_{3}}^{2}}{{a}_{3}+{a}_{4}}$≥4a3
(a4+a1)+$\frac{4{{a}_{4}}^{2}}{{a}_{4}+{a}_{1}}$≥4a4
上面四式相加,可得
2(a1+a2+a3+a4)+($\frac{4{{a}_{1}}^{2}}{{a}_{1}+{a}_{2}}$+$\frac{4{{a}_{2}}^{2}}{{a}_{2}+{a}_{3}}$+$\frac{4{{a}_{3}}^{2}}{{a}_{3}+{a}_{4}}$+$\frac{4{{a}_{4}}^{2}}{{a}_{4}+{a}_{1}}$)≥4(a1+a2+a3+a4),
即有$\frac{{a}_{1}^{2}}{{a}_{1}+{a}_{2}}$+$\frac{{a}_{2}^{2}}{{a}_{2}+{a}_{3}}$+$\frac{{a}_{3}^{2}}{{a}_{3}+{a}_{4}}$+$\frac{{a}_{4}^{2}}{{a}_{4}+{a}_{1}}$≥$\frac{1}{2}$,
当且仅当a1=a2=a3=a4=$\frac{1}{4}$取得等号.

点评 本题考查不等式的证明,注意运用基本不等式和不等式的可加性,同时考查运算和推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.函数f(x)是定义在R上的偶函数,且f(1-x)=-f(x),当x∈[2,3)时,f(x)=x,则当x∈(-1,0]时,f(x)的解析式为(  )
A.x+4B.x-2C.x+3D.-x+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ-$\frac{π}{3}$)=$\frac{3}{2}$,C与l有且只有一个公共点,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设U=R,A={x|x<1},B={x|x>m}.
(1)若∁UA⊆B,求实数m的取值范围;
(2)若∁UA?B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.因式分解:2x2-x-5=2(x-$\frac{1-\sqrt{41}}{4}$)(x-$\frac{1+\sqrt{41}}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=[ax2-(2a+1)x+2a+1]ex
(1)求函数f(x)的单调区间;
(2)设x>0,2a∈[3,m+1],f(x)≥b2a-1${e}^{\frac{1}{a}}$恒成立,求正数b的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知矩形ABCD的顶点都在球O的球面上,AB=6,BC=2$\sqrt{3}$,四棱锥O-ABCD的体积为8$\sqrt{3}$,则球O的表面积为64π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设a,b,c∈R,函数f(x)=ax2+bx+c.
(1)当a>0,c=0时,判断函数H(x)=f[f(x)]-f(x)零点个数,并说明理由;
(2)设g(x)=cx2+bx+a,若对任意|x|≤1,都有|f(x)|≤1成立;则对任意|x|≤1,恒有|g(x)|≤M成立,求实数M的最小值及相应的a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}中,a1=1,a2k=a2k-1+(-1)k,a2k+1=a2k+2k(k∈N*),则{an}的前60项的和S60=232-94.

查看答案和解析>>

同步练习册答案