分析 把极坐标方程化为直角坐标方程,利用直线与圆相切的充要条件即可得出.
解答 解:曲线C:ρ=2acosθ(a>0),即ρ2=2aρcosθ(a>0),∴x2+y2=2ax,配方可得:C的直角坐标方程为(x-a)2+y2=a2.
直线l:ρcos(θ-$\frac{π}{3}$)=$\frac{3}{2}$,展开为$\frac{1}{2}ρcosθ$+$\frac{\sqrt{3}}{2}ρsinθ$=$\frac{3}{2}$,可得直角坐标方程:$x+\sqrt{3}y-3=0$.
由直线与圆相切可得:$\frac{\left|a-3\right|}{2}=a$,a>0.
解得:a=1.
点评 本题考查了极坐标方程化为直角坐标方程、直线与圆相切的充要条件、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com